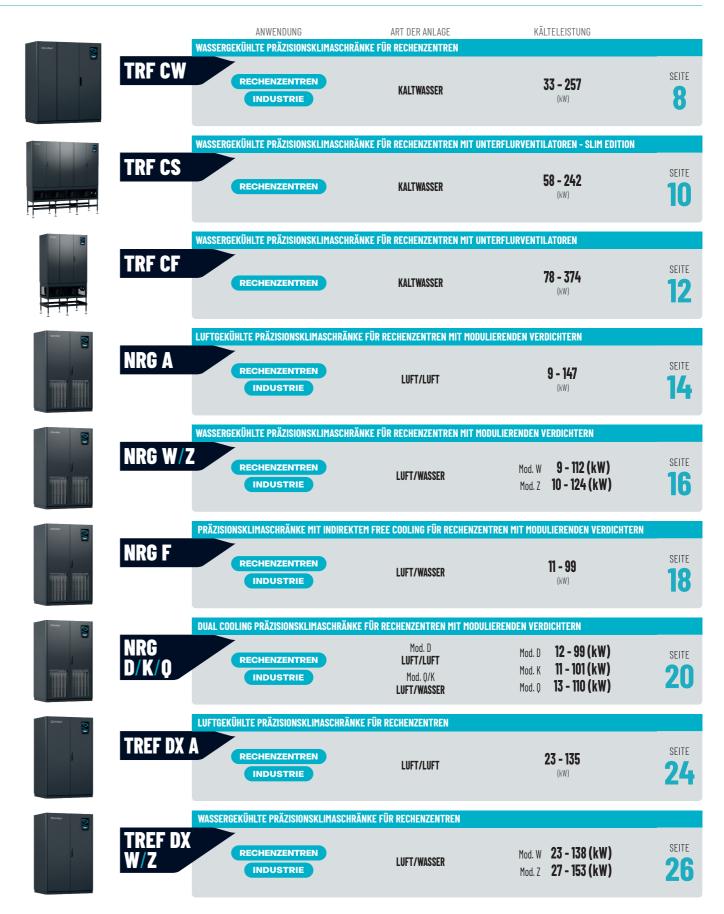


KATALOG CCAC HPDCU HDC

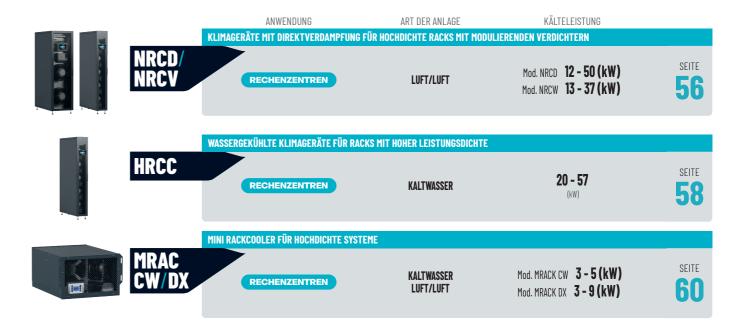

CHiRef

INNOVATORS above the standards

KATALOG CCAC - HPDCU - HDC

CCAC

CCAC


CCAC

HPDCU

High Density Cooling

Die technischen Daten können ohne Vorankündigung geändert werden. Diese Daten dürfen in der Entwicklungsphase nicht verwendet werden.

Die technischen Daten können ohne Vorankündigung geändert werden. Diese Daten dürfen in der Entwicklungsphase nicht verwendet werden.

CHiRef

CCAC

Plattform TRF Evolution

Am Besten von TREF inspiriert Mit revolutionärem Design

Effizienz, Flexibilität, geringe Aufstellfläche, Optimierung des internen Layouts.

TRF Evolution ist die neue HiRef Lösung für Präzisionsklimaschränke. Diese Lösung vereint in einem einzigen revolutionären Produkt die bereits zahlreich angebotenen Sortimente, von den wassergekühlten Geräten bis zu solchen mit Direktverdampfung. Das neue Sortiment zeichnet sich durch die zahlreichen Verbesserungen aus, die zur Kühlung der Rechenzentren an den Hauptgeräten durchgeführt wurden. Die Komponenten der neuen TRF Plattform besitzen alle Voraussetzungen, um für die Kühlung der Rechenzentren die effizienteste Lösung zu bieten und garantieren Zuverlässigkeit, eine präzise Kontrolle der Wärme-Feuchtigkeitsparameter und eine flexible Anpassung an

Kaltwasser

CF Geräten:

Von den wassergekühlten Geräten sind

• umfangreiches Leistungsspektrum:

· Luftstrom: Verschiedene Luftstrom-

Konfigurationen mit den TRF CW

Geräte TRF CS und TRF CF;

Kälteleistungen von 40 kW mit den TRF

CW Geräten, bis zu 350 kW mit den TRF

Modellen und Ventilatorenmodul für die

verschiedene Lösungen verfügbar:

die verschiedenen verlangten Arbeitsbedingungen. Die Tiefe wurde auf 890 mm und auf 960 mm erhöht und es wurde für die NRG Versionen ein um 30% größerer und für die TRF CW Versionen ein um 16% größerer Lamellen-Wärmetauscher eingesetzt. Zugenommen haben die spezifischen Kapazitäten (kW/m2) und die Effizienz, dank eines Ventilators der letzten Generation, der die Leistungen um 15% erhöht. Jedes HiRef Gerät kann außerdem in der Co-Design-Phase mit dem Kunden oder Planer je nach den spezifischen Anwendungsbedingungen personalisiert werden, wodurch für jeden Einsatz modulare und effizientere Lösungen entstehen.

 Hydronikkreislauf: Die Konfigurationen A B C wurden entwickelt, um je nach den Arbeitsbedingungen des Rechenzentrums die beste Lösung wählen zu können:

Geometrie "A"

Für den Betrieb mit hohen Wasserdurchflussmengen und $\Delta T = 5^{\circ}C$ konzipiert. Ideal für schon vorhandene Lösungen

Geometrie "B"

Für den Betrieb mit mäßigen Wasserdurchflussmengen und $\Delta T = 8^{\circ}C$ konzipiert. Ideal für Rechenzentren der letzten Generation

Geometrie "C"

Für den Betrieb mit geringen Wasserdurchflussmengen und $\Delta T = 12^{\circ}C$ konzipiert. Ideal für Rechenzentren der allerletzten Generation

Regelung

Alle TRF Gerät sind für die Regelung mit Wasserventilen ausgestattet. Zusätzlich zu den modulierenden 2- oder 3-Wege-Ventilen können auf Anfrage druckunabhängige Regelventile montiert werden. Diese bieten zahlreiche Vorteile, unter anderem geringe Inbetriebnahmekosten, eine sorgfältigere und stabilere Einstellung der Kälteleistung.

TRF CW

WASSERGEKÜHLTE PRÄZISIONSKLIMASCHRÄNKE FÜR RECHENZENTREN

TRF CS

WASSERGEKÜHLTE
PRÄZISIONSKLIMASCHRÄNKE
FÜR RECHENZENTREN
MIT UNTERFLURVENTILATOREN
SLIM EDITION

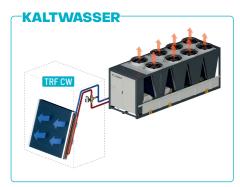
TRF CF

WASSERGEKÜHLTE PRÄZISIONSKLIMASCHRÄNKE FÜR RECHENZENTREN MIT UNTERFLURVENTILATOREN

Direktverdampfung

Die Präzisionsklimageräte NRG sind die HiRef Lösung der Plattform TRF Evolution für Anwendungen mit Geräten mit Direktverdampfung. Durch den Einsatz eines invertergesteuerten Verdichters eignen sich die NRG Geräte für Lösungen mit geringem Energieverbrauch und hoher Klimatisierungspräzision.

Klimatisierungspräzision.
Bei den verschiedenen angebotenen
Ausführungen kann die geeignetste Luftoder Wasserenergiequelle genutzt werden.
Mit dem Dual Cooling Betrieb ist eine
komplette Redundanz möglich, dank des
zusätzlichen wassergekühlten Registers.
Zuletzt besteht für die indirekte Free
Cooling Version mit Wasserkühlung noch
die Möglichkeit, den Energieverbrauch
durch Nutzung der niedrigen
Umgebungstemperaturen zu minimieren,
um ohne Verwendung des Verdichters zu
kühlen.


NRG

PRÄZISIONSKLIMASCHRÄNKE FÜR RECHENZENTREN MIT MODULIERENDEN VERDICHTERN

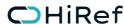
Die neuen wassergekühlten Klimageräte der Baureihe TRF CW eignen sich ganz besonders für technologische Umgebungen, die eine konstante Temperatur- und Luftleistungskontrolle verlangen. Die Komponenten des Geräts **TRF CW** bieten die effizienteste Lösung für die Kühlung der Rechenzentren und garantieren Zuverlässigkeit, eine präzise Kontrolle der Wärme-Feuchtigkeitsparameter und eine flexible Anpassung an die verschiedenen verlangten Arbeitsbedingungen.

Erleichterte Normalwartung

Die aut durchdachte Konstruktion erlaubt den Zugriff zu den Bauteilen auf der Vorderseite des Geräts. Dies erleichtert die Normalwartungsarheiten, unter voller Einhaltung der Sicherheitsanforderungen.

Einstellung der Ventilation

Je nach der Luftverteilungslogik im Serverraum kann auf dem Gerät das geeignetste Ventilationssystem gewählt und eine konstante Luftleistung (airflow control) oder eine konstant verfügbare Überlappung (Δp control) garantiert werden; diese letztgenannte eignet sich besonders bei Verwendung eines Doppelbodens.


Doppelkreislauf

Die wassergekühlten Geräte sind auch mit Doppelkreislauf verfügbar. Diese Ausführung wird von zwei verschiedenen Hydraulikkreisen gespeist, die im Falle einer Betriebsstörung eines der beiden Kreisläufe eine maximale Kontinuität bieten. Jeder Kreislauf ist mit einem Regelventil ausgestattet.

- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, zusätzlichem Warmwasser-Register, oder beidem
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Am Gerät installierter Befeuchter
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast $(\Delta T konstant)$
- Hydraulische Anschlüsse an der Geräteunterseite
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Doppelpaneele, nur an den vorderen Türen oder am ganzen Gerät
- Sofortlesefunktion von Wasserdurchfluss, Eintritts- und Austrittstemperatur des Wassers, oder der abgegebenen Kälteleistung

Lamellenregister mit hvdrophiler Behandlung

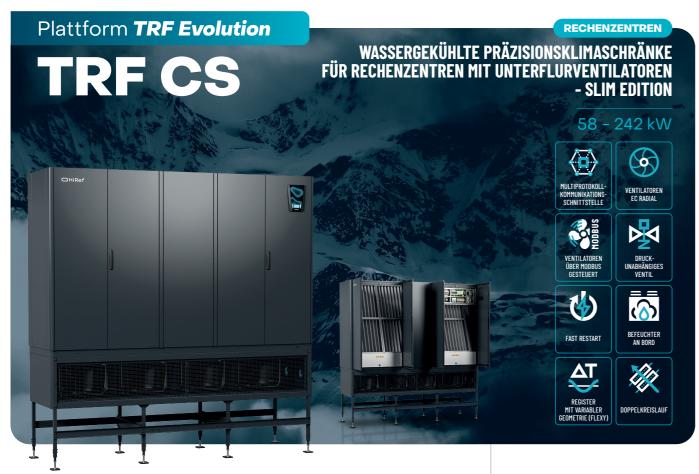
Alle Modelle der Baureihe TRF CW sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen und den Abfluss des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Zahlreiche Ventilarten sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe **TRF CW** haben serienmäßig Regelventile mit Servomotor 0-10V, die in der 2-Wege-Ausführung, mit Anlage mit veränderlicher Leistung, oder in der 3-Wege-Ausführung oder mit Servomotor mit Federrückstellung wählbar sind. Auf Anfrage können außerdem druckunabhängige Ventile montiert werden. Alle diese Ventilarten garantieren höchst präzise Einstellungen und halten das hydronische Gleichgewicht der Anlage aufrecht.

Neues Design: Effizienz, Flexibilität und **Optimierung des internen** Layouts

Die Innenräume wurden ganz neu konzipiert, um die Komponenten besser zu verteilen. Das neue interne Layout umfasst einen größeren Lamellen-Wärmetauscher und einen Ventilator der letzten Generation, der die allerhöchste Luftleistung und Effizienz garantiert, Infolge einer sorgfältigen fluiddynamischen Untersuchung wurde die Filterfläche vergrößert, die jetzt auf dem gesamten Register verteilt ist, um die Luftstrom-Druckverluste noch weiter reduzieren zu können.


EC-Lüftung 2.0

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT . Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertsnanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

TRF CW		040	060	070	080	090	100	110	130	150	170	180	210	240
Geometrie A				Lufttemp.	35°C rel.	Feuchtig	ceit 30%	- Wasser	temp. In 1	5°C Was	sertemp.	Out 20°C	Glykol 0%	
Kälteleistung	[kW]	43,7	58,6	68,2	80,2	89,3	102,3	112,9	133,9	145,8	172,9	182,0	215,9	237,5
SHR		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
EER		36,4	39,1	35,9	36,5	37,2	39,3	36,4	39,4	32,4	35,3	35,0	37,9	32,1
Geometrie B				Lufttemp.	35°C rel.	Feuchtig	ceit 30%	- Wasser	temp. In 1	15°C Was	sertemp.	Out 23°C	Glykol 0%	
Kälteleistung	[kW]	39,1	55,0	63,4	75,3	82,4	98,1	104,9	125,9	135,6	162,6	169,2	203,0	228,4
SHR		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
EER		32,6	36,7	33,4	34,2	34,3	37,7	33,8	37,0	30,1	33,2	32,5	35,6	30,9
Geometrie C				Lufttemp.	35°C rel.	Feuchtig	ceit 30 %	- Wasser	temp. In 1	15°C Was	sertemp.	Out 27°C	Glykol 0%	
Kälteleistung	[kW]	33,9	50,1	56,5	67,9	73,8	87,9	91,0	112,3	117,6	145,1	146,8	181,1	210,6
SHR		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
EER		28,3	33,4	29,7	30,9	30,8	33,8	29,4	33,0	26,1	29,6	28,2	31,8	28,5
Geometrie A				Lufttemp.	30°C rel.	Feuchtiq	keit 35%	- Wasser	rtemp. In 1	10°C Was	sertemp.	Out 15°C	Glykol 0%	
Kälteleistung	[kW]	43,3	59,6	67,9	80,8	89,9	104,1	112,3	133,7	148,4	172,7	185,2	219.7	236,3
SHR		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	0,9
EER		36,1	39,7	35,7	36,7	37,5	40,0	36,2	39,3	33,0	35,2	35,6	38,5	31,9
Geometrie B				Lufttemp.	30°C rel.	Feuchtig	keit 35%	- Wasser	rtemp. In 1	10°C Was	sertemp.	Out 18°C	Glykol 0%	
Kälteleistung	[kW]	38,8	55,2	63,3	74,8	82,4	98,4	104,8	126,3	135,3	163,1	169,0	203,6	229,5
SHR		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
EER		32,3	36,8	33,3	34,0	34,3	37,8	33,8	37,1	30,1	33,3	32,5	35,7	31,0
Geometrie C				Lufttemp.	30°C rel.	Feuchtig	ceit 35%	- Wasser	temp. In 1	O°C Was	sertemp.	Out 22°C	Glykol 0%	
Kälteleistung	[kW]	33,4	49,8	54,4	67,5	73,3	87,6	90,1	111,8	116,3	144,4	145,2	180,3	210,2
SHR		1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0	1,0
EER		27,8	33,2	28,6	30,7	30,5	33,7	29,1	32,9	25,8	29,5	27,9	31,6	28,4
Geometrie A				Lufttemp.	24°C rel	Feuchtig	keit 50%	- Wasse	rtemp. In	7°C Wass	sertemp.	Out 12°C	Glykol 0%	
Kälteleistung	[kW]	38,1	58,0	64,4	80,8	85,3	105,5	103,1	137,2	137,8	177,2	172,0	226,9	257,1
SHR		0,9	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,7
EER		31,8	38,7	33,9	36,7	35,5	40,6	33,3	40,4	30,6	36,2	33,1	39,8	34,7
Nennluftleistung	m³/h	10700	10700	14500	14500	18000	18000	24000	24000	31000	31000	38700	38700	39000
Leistungsaufnahme der Ventilatoren	[kW]	1,2	1,5	1,9	2,2	2,4	2,6	3,1	3,4	4,5	4,9	5,2	5,7	7,4
_	dB(A)	61	61	67	67	72	72	66	67	71	72	69	70	71
Lp @ Nominal rpm; dist.= 2 m Q=2	ub (n)													
Lp @ Nominal rpm; dist.= 2 m Q=2 Abmessungen Mod. "D" (Downflow) [B-H-T]* Stromversorqung	mm V/Ph/Hz	1010x20	000x890		000x890	1760x20	00x890	2020x2 400/3	000x890	2510x20	000x890	3160x20	000x890	3160x2000x960

Auch mit 60 Hz Versorgung verfügbar. Leistungsangaben bezogen auf die Downflow-Versionen. *Gerät auch in den Modellen "U" (Uplow) und "X" (Displacement) verfügbar, mit Ausnahme der Größe 240. Höhe Modell "X" (Displacement) 2250 mm

CHiRef **C** HiRef KATALOG CCAC - HPDCU - HDC www.hiref.it

TRF CS ist die Baureihe der wassergekühlten Präzisionsklimaschränke für Technologieräume mit hoher Leistungsdichte. Die Ventilatoren des Geräts **TRF CS** sind in einem getrennten Abteil positioniert (die sogenannte FREE FAN Lösung), um die Gesamtkälteleistung des Geräts zu erhöhen, ohne jedoch die Tiefe zu benachteiligen, die 890 mm bleibt. Jedes Detail ist extrem aufmerksam studiert, um die Druckverluste des Luftstroms und den Energieverbrauch der Ventilatoren, d.h. die einzige elektrische Last im Gerät, zu minimieren.

-KALTWASSER-

FREE FAN Lösungen

Die FREE FAN Lösung mit in getrenntem Abteil montierten Ventilatoren schafft Freiraum im Geräteinnern und vergrößert dadurch die Oberfläche des Registers. Demzufolge werden gleichzeitig die Luftleistung und Kälteleistung erhöht und die Luftstrom-Druckverluste reduziert. Die FREE FAN Lösung erhöht die Kälteleistungsdichte des Sortiments.

- und Nachheizsystemen anhand von Heizwiderständen
- Feuchtigkeitskontrolle mittels
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast $(\Delta T konstant)$
- Hydraulische Anschlüsse an der Geräteunterseite
- Umfangreiche Auswahl an Zubehören, wie Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling
- Doppelte Stromversorgung mit automatischer Umschaltung
- Sofortlesefunktion von Wasserdurchfluss, Ein- und Ausgangstemperatur des Wassers,

KONFIGURATION **DES LUFTSTROMS**

• Temperaturkontrolle mit Heiz-

- Ent- und Befeuchtung
- Am Gerät installierter Befeuchter

Auf Anfrage

- · Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelpaneele, nur an den vorderen Türen oder am ganzen Gerät
- oder der abgegebenen Kälteleistung

Zahlreiche Ventilarten sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe TRF CS haben serienmäßig Regelventile mit Servomotor 0-10V, die in der 2-Wege-Ausführung, mit Anlage mit veränderlicher Leistung, oder in der 3-Wege-Ausführung oder mit Servomotor mit Federrückstellung wählbar sind. Auf Anfrage können außerdem druckunabhängige Ventile montiert werden. Alle diese Ventilarten garantieren höchst präzise Einstellungen und halten das hydronische Gleichgewicht der Anlage aufrecht.

TRF CS

FER

EER

EER

EER

EER

EER

Lp @ Nominal rpm: dist.= 2 m 0=2 bmessungen [BxHxT]

Ventilatorenmodul [BxHxT]

nessunaen mit

Einstellung der Ventilation Je nach der Luftverteilungslogik

im Serverraum kann auf dem Gerät das geeignetste Ventilationssystem gewählt und eine konstante Luftleistung (airflow control) oder eine konstant verfügbare Überlappung (∆p control) garantiert werden; diese letztgenannte eignet sich besonders bei Verwendung eines Doppelbodens.

Doppelkreislauf

84.9

28,5

27.9 30.3

79 Q

28,5

1,0

81,8

0,8

15500

2,8

69

26,1

25,4

1,0

0,8

15500

2,6

69

1270x2550x890

28.0 30.3 33.6 35.2

103,0

31,2

33.4

102.8

31,2

1,0

104,7

0,8

23550

3,3

66

1760x2550x890

Die wassergekühlten Geräte sind auch mit Doppelkreislauf verfügbar. Diese Ausführung wird von zwei verschiedenen Hydraulikkreisen gespeist, die im Falle einer Betriebsstörung eines der beiden Kreisläufe eine maximale Kontinuität bieten. Jeder Kreislauf ist mit einem Regelventil ausgestattet.

Lamellenregister mit hvdrophiler Behandlung

Alle Modelle der Baureihe TRF CS sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen und den Abfluss des Kondenswassers im Entfeuchtungsprozess, wodurch

vermieden wird.

045 055 065 075 150 180 200 210

ufttemp. 35°C rel. Feuchtigkeit 30% - Wassertemp. In 15°C Wassertemp. Out 20°C Glykol 0%

ufttemp, 35°C rel.Feuchtigkeit 30% - Wassertemp, In 15°C Wassertemp, Out 23°C Glykol 0%

ıfttemp. 35°C rel. Feuchtigkeit 30% - Wassertemp. In 15°C Wassertemp. Out 27°C Glykol 0%

121,2

32,8

35.5

121.4

32,8

1,0

29,6

131,2

23550

3,7

67

1.0

157,4

34,2

37.5

157.2

1.0

34,2

1.0

0,8

36000

4,6

68

165,3 200,5

2510x2550x890

ufttemp. 30°C rel. Feuchtigkeit 35% - Wassertemp. In 10°C Wassertemp. Out 22°C Glykol 0%

37,6 38,3

36,3

38.6

36,4

0,8

36000

5,2

68

47000

7,3

69

47000

70

3160x2000x890

3160x2550x890

8,2

110.8 130.2

das Nachziehen von Tropfen

inner- und außerhalb des Geräts

Erleichterte Normalwartung

Die gut durchdachte Konstruktion erlaubt den Zugriff zu den Bauteilen auf der Vorderseite des Geräts. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

EC-Lüftung 2.0

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

Erweiterter Filterbereich

Die auf der gesamten Oberfläche des Registers positionierten Luftfilter sorgen für einen maximalen Filterbereich und minimale Luftstrom-Druckverluste des Geräts.

Auch mit 60 Hz Versorgung verfügbar. Mindesthöhe mit Ventilatorenmodul 2550 mm.

m3/h

kW

dB (A)

mm

TRF CF ist die Baureihe der wassergekühlten Präzisionsklimaschränke für Technologieräume mit hoher Leistungsdichte. Genauso wie bei der Baureihe TRF CS sind die Ventilatoren auch hier in einem getrennten Abteil montiert und zusätzlich sind die Geräte mit zwei Kaltwasserregistern ausgestattet. Diese Lösung bietet trotz gleichbleibender Tiefe von 960 mm eine maximale Kälteleistung. Durch eine aufmerksame Analyse der Strömungsdynamik wurden alle Konstruktionsdetails extrem sorgfältig entwickelt, um Druckverluste des Luftvolumenstroms auf ein Minimum zu reduzieren und den Energieverbrauch der Ventilatoren, d.h. die einzige elektrische Last des Geräts, zu minimieren.

-KALTWASSER-

FREE FAN Lösungen

Die FREE FAN Lösung mit in getrenntem Abteil montierten Ventilatoren schafft Freiraum im Geräteinnern und vergrößert dadurch die Oberfläche des Registers. Demzufolge werden gleichzeitig die Luftleistung und Kälteleistung erhöht und die Luftstrom-Druckverluste reduziert. Die FREE FAN Lösung erhöht die Kälteleistungsdichte des Sortiments.

- von Heizwiderständen
- Ent- und Befeuchtung
- Am Gerät installierter Befeuchter
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast $(\Delta T konstant)$
- Hydraulische Anschlüsse an der Geräteunterseite
- Umfangreiche Auswahl an Zubehören, wie Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling
- · Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Türen oder am ganzen Gerät
- Sofortlesefunktion von Wasserdurchfluss, Ein- und Ausgangstemperatur des Wassers,

KONFIGURATION **DES LUFTSTROMS**

• Temperaturkontrolle mit Heizund Nachheizsystemen anhand

- Feuchtigkeitskontrolle mittels

Auf Anfrage

- Doppelpaneele, nur an den vorderen
- oder der abgegebenen Kälteleistung

Zahlreiche Ventilarten sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe TRF CF haben serienmäßig Regelventile mit Servomotor 0-10V, die in der 2-Wege-Ausführung, mit Anlage mit veränderlicher Leistung, oder in der 3-Wege-Ausführung oder mit Servomotor mit Federrückstellung wählbar sind. Auf Anfrage können außerdem druckunabhängige Ventile montiert werden. Alle diese Ventilarten garantieren höchst präzise Einstellungen und halten das hydronische Gleichgewicht der Anlage aufrecht.

TRF CF

EER

FER

FFR

EER

FFR

Nennluftleistung

Leistungsaufnahme der

Ventilatorenmodul [RyHyT]

Lp @ Nominal rpm; dist.= 2 m 0=2 Abmessungen [BxHxT]

essungen mit

Einstellung der Ventilation Je nach der Luftverteilungslogik

im Serverraum kann auf dem Gerät das geeignetste Ventilationssystem gewählt und eine konstante Luftleistung (airflow control) oder eine konstant verfügbare Überlappung (∆p control) garantiert werden; diese letztgenannte eignet sich besonders bei Verwendung eines Doppelbodens.

Doppelkreislauf

34,7

1.0

ΠQ

35.3

33,8

38.3

16500

2,9

fttemp, 30°C rel. Feuc

32.5

30,7

0.8

16500

2,8

70

1270x2550x960

m³/h

[kW]

dR (A)

mm

26,2

24,0

1.0

10

26.1

141,8

24,0

0.8

29000

5,9

Die wassergekühlten Geräte sind auch mit Doppelkreislauf verfügbar. Diese Ausführung wird von zwei verschiedenen Hydraulikkreisen gespeist, die im Falle einer Betriebsstörung eines der beiden Kreisläufe eine maximale Kontinuität bieten. Jeder Kreislauf ist mit einem Regelventil ausgestattet.

045 055 065 075 150 180 200 210

ufttemp, 35°C rel. Feuchtigkeit 30% - Wassertemp, In 15°C Wassertemp, Out 20°C Glykol 0%

24,7

23,1

1.0

24,6

219,8

23,1

0.8

44000

73

26,4

25,3

Πq

26.4

254,3

25,4

28.4

44000

73

tigkeit 35% - Wassertemp. In 10°C Wassertemp. Out 18°C Glykol 0%

23,9 25,3

23,9 25,5

24,1

22,0

283.7

22,0

0.8

24 fi

58000

12,9

74

0.7

58000

13,6

75

3160x2000x960

3160x2550x960

275

mp. In 10°C Wassertemp. Out 15°C Glykol 0%

27,6

26,0

1.0

ηq

28.0

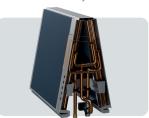
164,6

26,1

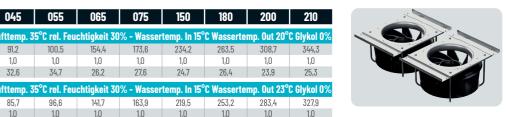
30.3

29000

6,3


Lamellenregister mit hvdrophiler Behandlung

Alle Modelle der Baureihe TRF CF sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen und den Abfluss des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.


Erleichterte Normalwartung

Die gut durchdachte Konstruktion erlaubt den Zugriff zu den Bauteilen auf der Vorderseite des Geräts. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Doppeltes Register

Die für eine optimale Innenraumgestaltung konzipierte Lösung mit doppeltem Register bietet eine merkbar größere Wärmeaustauschfläche und erhöht die Kälteleistungsabgabe.

EC-Lüftung 2.0

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

13

Auch mit 60 Hz Versorgung verfügbar. Mindesthöhe mit Ventilatorenmodul 2550 mm.

Die Präzisionsklimaschränke der Baureihe **NRG** sind für die Klimatisierung technologischer Räume mit hoher Wärmedichte ausgelegt, für die eine genaue Kontrolle der Wärme-/Feuchtigkeitsparameter und ein Dauerbetrieb verlangt wird. Die Verwendung von invertergesteuerten Verdichtern, die in der Lage sind, der Wärmelast mit extremer Präzision zu folgen, sowie von EC-Ventilatoren (serienmäßig) und elektronischen Expansionsventilen (serienmäßig) ermöglichen außerdem hohe Leistungen mit geringem Energieverbrauch, was sich günstig auf den PUE-Wert des Rechenzentrums auswirkt. Die Stärke des neuen Sortiments **NRG** liegt in der hohen spezifischen Leistung (kW/m²), die dank einer sorgfältigen internen Projektentwicklung, einem nur 890 mm tiefen Rahmen und der besonderen Wahl der Komponenten erzielt wurde.

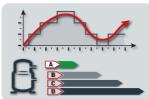
Vielseitige und flexible Baureihe

Es besteht die Wahl unter verschiedenen Kühl-Konfigurationen:

- NRG A Luftkühlung mit externem Verflüssiger.
- NRG W Wasserkühlung oder Dry-Cooler.
- NRG Z Wasserkühlung mit Leitungswasser (15°C).
- NRG F Wasserkühlung und indirektes Free Cooling mit Wasser.
- NRG D Luftkühlung mit externem Verflüssiger und Dual Cooling.
- NRG K Wasserkühlung oder Dry-Cooler und Dual Cooling.

Wasserkühlung mit Leitungswasser (15°C) und Dual Cooling.

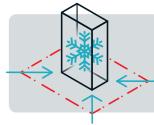
Die **NRG A** sind die luftgekühlten Präzisionsklimaschränke der Baureihe **NRG,** die im Bereich der Klimatisierung von Rechenzentren umfangreich eingesetzt werden. Diese luftgekühlte Lösung ist durch das Fehlen anderer Hilfskreise und Pumpen nicht nur anlagenmäßig einfach konzipiert, sondern auch einfach zu verwalten, da der Kältekreis vom Klimaschrank kontrolliert wird; außerdem können die interne Einheit und der externe Verflüssiger leicht installiert werden.


- Kältemittel R410A
- EC-Ventilatoren
- Scroll-Verdichter
- mit Inverter und On-Off

 Elektronische Expansionsventile
- Fortschrittliche Mikroprozessor-Überwachung, mit LCD-Display programmierbar
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (Δp control)
- Bausatz große Entfernungen für einen optimalen Betrieb, falls das interne und das externe Gerät weit voneinander entfernt sind
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt


Modulation der Leistung

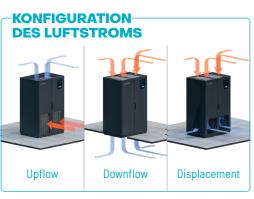
Die Geräte **NRG** A passen sich schnell dem Kältebedarf des Rechenzentrums an. Dank des invertergesteuerten Verdichters ist die Leistung bis 25% der Nennleistung modulierbar, was gleichzeitig den Verbrauch reduziert. Dies sichert auch bei reduzierten Lasten einen Dauerbetrieb des Geräts, ohne dass Ein- und Ausschaltungszyklen erfolgen.

Höchste Anlageneffizienz

Die angewendeten Projektlösungen umfassen nicht nur den Einsatz von elektronischen Expansionsventilen, sondern auch über Modbus verwaltete Scroll-Verdichter mit variabler Geschwindigkeit und EC-Ventilatoren mit elektronischer Umschaltung. Diese Eigenschaften erlauben eine sehr sorgfältige Erfassung, Verwaltung und Einstellung der Betriebsparameter und damit der thermohygrometrischen Werte im Serverraum, mit hohen Energieeffizienzniveaus.

Maximale Leistungsdichte

Das interne Design und die besondere Anordnung der Komponenten der neuen, in den NRG-Geräten verwendeten Plattform TRF Evolution, wurden so entwickelt, dass das Verdampfungsregister über eine maximale Wärmeaustauschfläche verfügt. Dies hat, zusammen mit der Verwendung von EC-Ventilatoren mit elektronischer Umschaltung der letzten Generation mit hoher Luftleistung, eine Steigerung der Leistungsdichte ermöglicht. Die Geräte NRG A nutzen den im Serverraum eingenommenen Platz maximal und eignen sich deshalb für Anwendungen mit hoher Wärmelastdichte, die für die Rechenzentren der letzten Generation typisch sind.


Externe Verflüssiger

Alle Geräte können mit externen HiRef Verflüssigern kombiniert werden und es stehen verschiedene Kombinationen zur Wahl, die alle Anlagenbedürfnisse erfüllen. Die externen Oversize-Verflüssiger eignen sich ideal für heißere

Die externen Oversize-Verflüssiger eignen sich ideal für heißere Umgebungen, in denen die Verflüssigungstemperatur unter Kontrolle zu halten ist, während die Compact-Geräte geringe Abmessungen und Verbrauchswerte aufweisen. Die mit Doppelkreislauf-Einheiten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und Redundanz der Anlage zu sichern, oder mit doppeltem Kältekreis, um die Installationsräume und Kosten zu reduzieren.

NRG A		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962	1003	1103
					Luf	ttempe	ratur 35°	°C rel.Fe	uchtigk	eit 30%	Außenlu	ft 35°C					
Kälteleistung	[kW]	10,8	15,2	25	29,9	39,2	47,5	53,4	59	68,9	72,3	90	96,1	101,2	114,3	130,1	147,2
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4,2	4,3	4,9	4,8	5,1	4,7	3,9	4,5	4,4	4,6	4,3	4,4	5	4,8	4,7	4
Leistungsaufnahme insg.	[kW]	2,8	3,9	6,4	7,4	9,5	12	15,5	15,4	17,8	18,6	25,1	26,5	26	29,6	33,6	42,3
					Luf	ttempe	ratur 30°	°C rel.Fe	uchtigk	eit 35%	Außenlu	ft 35°C					
Kälteleistung	[kW]	9,9	13,9	22,5	27	35,5	43,2	48,7	53,7	62,8	65,6	81,9	87,3	92	104,1	119	135,7
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,9	4,1	4,4	4,4	4,7	4,3	3,7	4,2	4,1	4,2	4	4,2	4,7	4,4	4,4	3,8
Leistungsaufnahme insg.	[kW]	2,7	3,8	6,3	7,4	9,4	11,8	15,1	15	17,5	18,4	24,5	25,9	25,6	29,3	33,1	41,7
					Luf	ttempe	ratur 24°	°C rel.Fe	uchtigk	eit 50 %	Außenlu	ft 35°C					
Kälteleistung	[kW]	9,3	12,3	19,8	23,8	31,3	38,1	44	47,7	56,8	58,2	73,8	77,3	81,4	93,3	109,2	127
SHR		0,9	0,9	1	1	1	1	0,9	1	0,9	1	0,9	1	1	0,9	0,9	0,8
EER		3,7	77	,								77	7.0			/ 1	3,6
		J,I	3,7	4	4	4,2	3,9	3,5	3,9	3,8	3,8	3,7	3,8	4,2	4,1	4,1	0,0
Leistungsaufnahme insg.	[kW]	2,7	3,7	6,2	7,2	4,2 9,3	3,9 11,6	3,5 14,5	3,9 14,5	3,8 17,2	3,8 18	23,8	3,8 25,1	4,2 25,2	28,6	32,8	41,1
Leistungsaufnahme insg. Nennluftleistung	[kW]														-11-		
		2,7	3,7	6,2	7,2	9,3	11,6	14,5	14,5	17,2	18	23,8	25,1	25,2	28,6	32,8	41,1
Nennluftleistung	m³/h	2,7	3,7 3700	6,2	7,2 8800 70	9,3 11720 71	11,6 11720	14,5 11720 74	14,5 14300	17,2 14300 77	18 17500	23,8 19900 76	25,1 23700	25,2 25300 76	28,6	32,8 25300 77	41,1
Nennluftleistung Lp @ Nominal rpm; dist.= 2 m Q=2	m³/h dB (A)	2,7 2150 50	3,7 3700 54	6,2 8800 70	7,2 8800 70 00x890	9,3 11720 71 127	11,6 11720 74	14,5 11720 74	14,5 14300 75	17,2 14300 77 00x890	18 17500 77	23,8 19900 76 100x890	25,1 23700	25,2 25300 76 251	28,6 25300 76	32,8 25300 77 390	41,1

Leistungsdaten der Downflow-Versionen in Kombination mit externem Verflüssiger HiRef Standard. Auch mit 60 Hz Versorgung verfügbar.

Höhe Displacement-Modelle 2125 mm für die Größen 0091-0131.

Die Geräte **NRG W/Z** sind wassergekühlte Präzisionsklimaschränke. Die Baureihe W nutzt Dry-Cooler-Wasser, die **Baureihe Z** nutzt Leitungswasser oder Grundwasser mit niedriger Temperatur (15°C). Die NRG Geräte dieser Baureihen sind Monoblock-Geräte, in deren Innern sich der gesamte Kältekreis konzentriert und die Verflüssigung erfolgt dank eines gelöteten Plattenwärmetauschers aus Edelstahl AISI 304.

-WASSERGEKÜHLT

-MIT LEITUNGSWASSER

GEKÜHLT

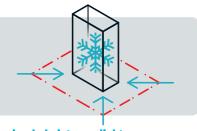
- Kältemittel R410A
- EC-Ventilatoren
- Scroll-Verdichter
- mit Inverter und On-Off • Elektronische Expansionsventile
- Fortschrittliche Mikroprozessor-Überwachung, mit LCD-Display programmierbar


www.hiref.it

- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free


Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (\Delta p control)
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt



Modulation der Leistung

Die Geräte **NRG W/Z** passen sich schnell dem Kältebedarf des Rechenzentrums an. Dank des inverteraesteuerten Verdichters ist die Leistung bis 25% der Nennleistung modulierbar, was gleichzeitig den Verbrauch reduziert. Dies sichert auch bei reduzierten Lasten einen Dauerbetrieb des Geräts, ohne dass Ein- und Ausschaltungszyklen erfolgen.

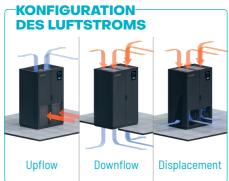
Maximale Leistungsdichte

Das interne Design und die besondere Anordnung der Komponenten der neuen, in den NRG-Geräten verwendeten Plattform TRF Evolution, wurden so entwickelt, dass das Verdampfungsregister über eine maximale Wärmeaustauschfläche verfügt. Dies hat, zusammen mit der Verwendung von EC-Ventilatoren mit elektronischer Umschaltung der letzten Generation mit hoher Luftleistung, eine Steigerung der Leistungsdichte ermöglicht. Die Geräte **NRG W/Z** nutzen den im Serverraum notwendigen Platz maximal und eignen sich deshalb für Anwendungen mit hoher Wärmelastdichte, die für die Rechenzentren der letzten Generation typisch sind.

Höchste Anlageneffizienz

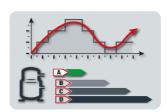
Die angewendeten Projektlösungen umfassen nicht nur den Einsatz von elektronischen Expansionsventilen, sondern auch über Modbus verwaltete Scroll-Verdichter mit variabler Geschwindigkeit und EC-Ventilatoren mit elektronischer Umschaltung. Diese Eigenschaften erlauben eine sehr sorgfältige Erfassung, Verwaltung und Einstellung der Betriebsparameter und damit der thermohygrometrischen Werte im Serverraum, mit hohen Energieeffizienzniveaus.

NRG W		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
				Luf	ttemper	atur 35°(rel.Feu	chtigkeit	30% Wa	asser 40	-45°C				
Kälteleistung	[kW]	10,3	14,8	26,4	31,3	41,3	47,1	54,6	58,8	67	71,2	88,1	94,8	105,4	112,1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,6	4,1	6,1	5,8	6,2	5,1	4,6	4,9	4,5	4,9	4,4	4,7	5,8	5,1
Leistungsaufnahme insgesamt	[kW]	3,1	4	5,6	6,6	8,5	11	13,6	14,1	17,1	17,5	23,8	25	24	28
				Luf	ttemper	atur 30°0	rel.Feu	chtigkeit	35% Wa	asser 40	-45°C				
Kälteleistung	[kW]	9,5	13,5	23,6	28,2	36,9	42,4	49,3	52,9	60,5	64,1	79,8	85,6	95	101,5
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,3	3,8	5,3	5,1	5,3	4,6	4,2	4,5	4,1	4,3	4,1	4,3	5,2	4,6
Leistungsaufnahme insgesamt	[kW]	3	4	5,7	6,7	8,7	11,1	13,5	14,1	17,2	17,6	23,6	24,7	24,2	28,1
				Luf	ttempera	atur 24°(rel.Feu	chtigkeit	50% Wa	asser 40	-45°C				
Kälteleistung	[kW]	8,8	11,9	20,4	24,5	32,2	37,1	44,1	46,3	54,3	56,3	71,3	74,8	82,8	90,1
SHR		0,9	0,9	1	1	1	1	0,9	1	0,9	1	0,9	1	1	0,9
EER		3,2	3,4	4,4	4,4	4,6	4	3,8	3,9	3,6	3,8	3,7	3,8	4,5	4,1
Leistungsaufnahme insgesamt	[kW]	3	3,9	5,8	6,8	8,8	11,1	13,5	14	17,1	17,6	23,4	24,5	24,4	28,1
Nennluftleistung	m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	25300
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	50	54	70	70	71	74	74	75	77	77	76	76	76	76
Abmessungen [BxHxT]	mm	600x1875x600	900x1875x600	1010x20	00x890	127	70x2000x8	390	1760x20	000x890	2020x20	000x890	25	10x2000x8	90
Abmessungen Version Displacement [BxHxT]	mm	600X2125X600	900X2125X600	1010x20	00x890	127	70x2000x8	390	1760x20	00x890	2020x20	000x890	25	10x2000x8	190
Stromversorgung	V/Ph/Hz						400 /	3+N / 50							


NRG Z		0091	0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
				Lui	ttemper	atur 35°	C rel.Feu	chtigkei	t 30% W	asser 15	-30°C				
Kälteleistung	[kW]	11,1	16,5	28,7	34,1	45	51,6	59,8	65	73,5	78,2	96,6	104,2	115,6	124
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		5,1	6,7	10,7	9,9	10,5	8,1	7	7,7	6,7	7,4	6,4	6,9	9,6	8
Leistungsaufnahme insgesamt	[kW]	2,3	2,8	3,9	4,7	6,1	8,2	10,4	10,7	13,2	13,5	19	20,1	17,9	21,3
				Luf	ttemper	atur 30°	C rel.Feu	chtigkei	t 35% W	asser 15	-30°C				
Kälteleistung	[kW]	10,3	14,9	26	31	40,8	46,6	54,2	58,9	66,8	70,7	88	94,9	105,1	112,4
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4,8	6	8,9	8,4	8,9	7	6,2	6,8	6	6,5	5,9	6,3	8,3	7,1
Leistungsaufnahme insgesamt	[kW]	2,3	2,8	4,2	4,9	6,4	8,4	10,5	10,8	13,4	13,7	18,9	20	18,5	21,7
				Luf	ttemper	atur 24°	C rel.Feu	chtigkei	t 50% W	asser 15	-30°C				
Kälteleistung	[kW]	9,7	13,6	22,8	27,1	35,7	41,7	49,9	52,6	61,2	62,9	79,7	84,3	93,4	102,7
SHR		0,9	0,9	1	1	1	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
EER		4,5	5,5	7,2	6,9	7,3	6,1	5,7	6	5,4	5,7	5,4	5,6	7,1	6,4
Leistungsaufnahme insgesamt	[kW]	2,3	2,9	4,4	5,2	6,7	8,6	10,5	10,9	13,5	13,9	18,8	19,9	19	21,9
Nennluftleistung	m³/h	2150	3700	8800	8800	11720	11720	11720	14300	14300	17500	19900	23700	25300	25300
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	50	54	70	70	71	74	74	75	77	77	76	76	76	76
Abmessungen [BxHxT]	mm	600x1875x600	900x1875x600	1010x20	00x890	121	70x2000x8	390	1760x20	000x890	2020x20	000x890	25	10x2000x8	390
Abmessungen Version Displacement [BXHXT]	mm	600x1875x600	900x1875x600	1010x20	00x890	12	70x2000x8	390	1760x20	00x890	2020x20	000x890	25	10x2000x8	390
Stromversorgung	V/Ph/Hz						400 /	3+N / 50							

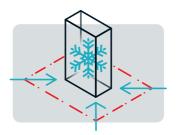
Leistungsangaben bezogen auf die Downflow-Versionen. Auch mit 60 Hz Versorgung verfügbar. Höhe Displacement-Modelle 2125 mm für die Größen 0091-0131.

Die Geräte **NRG F** sind wassergekühlte Präzisionsklimaschränke, die in der Lage sind, die Wirkung des indirekten Free Cooling mit Wasserkühlung zu nutzen. Die Baureihe F nutzt das Dry-Cooler-Wasser sowohl als Free Cooling Kältequelle, als auch als Wärmeaustauschmedium für die Verflüssigung des Kältekreises. Die NRG F sind Monoblock-Geräte, in deren Innern sich der gesamte Kältekreis konzentriert. Die Verflüssigung erfolgt dank eines gelöteten Plattenwärmetauschers aus Edelstahl AISI 304.



- Kältemittel R410A
- EC-Ventilatoren
- Scroll-Verdichter
- mit Inverter und On-Off • Elektronische Expansionsventile
- Fortschrittliche Mikroprozessor-Überwachung, mit LCD-Display programmierbar
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage


- Luftfilter Klasse G3 standardmäßig Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (Δp control)

Modulation der Leistung

Die Geräte **NRG F** passen sich schnell dem Kältebedarf des Rechenzentrums an. Dank des invertergesteuerten Verdichters ist die Leistung bis 25% der Nennleistung modulierbar, was gleichzeitig den Verbrauch reduziert. Dies sichert auch bei reduzierten Lasten einen Dauerbetrieb des Geräts, ohne dass Ein- und Ausschaltungszyklen erfolgen.

Maximale Leistungsdichte

Das interne Design und die besondere Anordnung der Komponenten der neuen, in den **NRG**-Geräten verwendeten Plattform TRF Evolution, wurden so entwickelt, dass das Verdampfungsregister über eine maximale Wärmeaustauschfläche verfügt. Dies hat, zusammen mit der Verwendung von EC-Ventilatoren mit elektronischer Umschaltung der letzten Generation mit hoher Luftleistung, eine Steigerung der Leistungsdichte ermöglicht. Die Geräte **NRG F** nutzen den im Serverraum notwendigen Platz maximal und eignen sich deshalb für Anwendungen mit hoher Wärmelastdichte, die für die Rechenzentren der letzten Generation typisch sind.

Höchste Anlageneffizienz

Die angewendeten Projektlösungen umfassen nicht nur den Einsatz von elektronischen Expansionsventilen, sondern auch über Modbus verwaltete Scroll-Verdichter mit variabler Geschwindigkeit und EC-Ventilatoren mit elektronischer Umschaltung. Diese Eigenschaften erlauben eine sehr sorgfältige Erfassung, Verwaltung und Einstellung der Betriebsparameter und damit der thermohygrometrischen Werte im Serverraum, mit hohen Energieeffizienzniveaus.

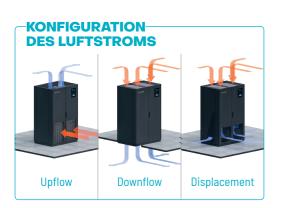
kälter ist als die warme Luft im EDV-Raum, versorgt das vom Dry-Cooler erzeugte Kaltwasser direkt das Wärmetauscherregister, das in der Lage ist, einen Teil oder 100% der erforderliche Kälteleistung abzugeben. Bevor es zum Dry-Cooler

zurückfließt, wird das Wasser im Innern des Plattenwärmetauschers für den Verdichter wiederverwendet. Der gesamte Prozess wird von einem 3-Wege-Ventil geregelt, das direkt von der HiRef-Software gesteuert wird, eine maximale Free Cooling Wirkung erzeugt und den Kältekreis kontrolliert. Dadurch wird die Arbeit des Verdichters erheblich reduziert, bis er im vollen Free Cooling Zustand mit einem bedeutend herabgesetzten PUE-Wert des Systems abschaltet.

NRG F		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			Luftte	mperatur	35°C rel.	. Feuchtig	keit 30%	Wasser 4	40°C-47°	C / Wasse	er 17°C / (Glykol 30°	%	
Kälteleistung	[kW]	13,9	24,3	28,6	36,6	41,6	47,6	54	61,2	63,6	75,8	85,4	93,2	99,2
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,7	5,2	5	5,1	4,3	3,9	4,4	4	4,2	3,7	4,2	4,9	4,3
Kälteleistung Free Cooling	[kW]	9	23,5	24,9	33,6	35,5	36,6	48,2	49,7	56,6	58,4	77,5	77,5	79,9
SHR Free Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insgesamt	[kW]	4,2	5,8	6,8	8,8	11,3	13,8	14,6	17,7	18	23	25,2	23,8	27,8
			Luftte	mperatur	30°C rel.	. Feuchtig	keit 35 %	Wasser 4	40°C-47°	C / Wasse	er 12°C /	Glykol 30°	%	
Kälteleistung	[kW]	12,6	21,9	25,7	32,9	37,3	43,1	48,7	55,5	57,8	68,9	77,7	84,2	89,5
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,4	4,6	4,4	4,5	3,8	3,6	4	3,6	3,8	3,4	3,8	4,4	3,9
Kälteleistung Free Cooling	[kW]	8,8	22,6	24	31,5	34,4	35,3	45,5	48	53,5	56,4	73,2	75,2	77,3
SHR Free Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insgesamt	[kW]	4,2	5,9	6,9	8,9	11,3	13,7	14,5	17,7	18	22,8	25	24	27,8
			Luftte	mperatur	24°C rel	. Feuchti	keit 50%	Wasser	40°C-45°	C / Wass	er 7°C / (Glykol 30°	%	
Kälteleistung	[kW]	11,4	19,3	22,9	29,3	33,7	39,9	43,7	51	51,8	64,2	69,7	76,2	82,7
SHR		0,9	1	1	1	0,9	0,9	0,9	0,9	0,9	0,8	0,9	0,9	0,9
EER		3,2	4,1	4,1	4,1	3,6	3,4	3,7	3,4	3,5	3,3	3,6	4,1	3,7
Kälteleistung Free Cooling	[kW]	8,8	22,5	24,6	33,3	36,3	39,3	48	54	56,4	65,8	80,4	80,4	86,8
SHR Free Cooling		0,9	1	0,9	0,9	0,9	0,8	0,9	0,8	0,9	0,8	0,8	0,8	0,8
Leistungsaufnahme insgesamt	[kW]	4	5,8	6,8	8,7	11	13,3	14,1	17,3	17,5	22,1	24,2	23,3	27
Nennluftleistung	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	54	70	70	70	74	74	75	77	77	75	76	75	75
Abmessungen [BxHxT]	mm	900x1875x600	1010x20	00x890	12	70x2000x8	90	1760x20	100x890	2020x20	00x890	25	10x2000x8	90
Abmessungen Version Displacement [BxHxT]	mm	900x2125x600	1010x20	00x890	12	70x2000x8	90	1760x20	00x890	2020x20	00x890	25	10x2000x8	90
Stromversorgung	V/Ph/Hz						400	/ 3+N / 50						

Leistungsangaben bezogen auf die Downflow-Versionen. Auch mit 60 Hz Versorgung verfügbar Höhe Displacement-Modelle 2125 mm für die Größe 0131.

NRG D/K/Q nur Dual Cooling Einheiten. Diese Geräte kombinieren das traditionelle Verdampfungsregister des Kältekreises mit der Kältewirkung des von einem externen Gerät wie der Chiller einlaufenden Kaltwassers. Die Nutzung einer doppelten Quelle garantiert die Kontinuität des Systems und erlaubt jederzeit die Wahl der zur Herabsetzung der Betriebskosten besten Betriebsmethode.

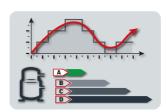

Externe Verflüssiger (nur Version D) Alle Geräte **NRG D** können mit externen HiRef

Verflüssigern kombiniert werden und es stehen verschiedene Kombinationen zur Wahl, die alle Anlagenbedürfnisse erfüllen. Die externen Oversize-Verflüssiger eignen sich ideal für heißere Umgebungen, in denen die Verflüssigungstemperatur unter Kontrolle zu halten ist, während die Compact-Geräte geringe Abmessungen und Verbrauchswerte aufweisen. Die mit Doppelkreislauf-Einheiten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und

Redundanz der Anlage zu sichern, oder mit

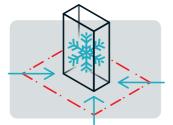
und Kosten zu reduzieren.

doppeltem Kältekreis, um die Installationsräume


 Kältemittel R410A • EC-Ventilatoren

- Scroll-Verdichter mit Inverter und On-Off
- Elektronische Expansionsventile
- Fortschrittliche Mikroprozessor-Überwachung, mit LCD-Display programmierbar
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage


- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (Δp control)
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt
- Bausatz große Entfernungen für einen optimalen Betrieb, falls das interne und das externe Gerät weit voneinander entfernt sind

Modulation der Leistung

Die Geräte **NRG D/K/Q** passen sich schnell dem Kältebedarf des Rechenzentrums an. Dank des invertergesteuerten Verdichters ist die Leistung bis 25% der Nennleistung modulierbar, was gleichzeitig den Verbrauch reduziert. Dies sichert auch bei reduzierten Lasten einen Dauerbetrieb des Geräts, ohne dass Ein- und Ausschaltungszyklen erfolgen.

Maximale Leistungsdichte

Das interne Design und die besondere Anordnung der Komponenten der neuen, in den **NRG**-Geräten verwendeten Plattform TRF Evolution, wurden so entwickelt, dass das Verdampfungsregister über eine maximale Wärmeaustauschfläche verfügt. Dies hat, zusammen mit der Verwendung von EC-Ventilatoren mit elektronischer Umschaltung der letzten Generation mit hoher Luftleistung, eine Steigerung der Leistungsdichte ermöglicht. Die Geräte **NRG D/K/Q** nutzen den im Serverraum notwendigen Platz maximal und eignen sich deshalb für Anwendungen mit hoher Wärmelastdichte, die für die Rechenzentren der letzten Generation typisch sind.

Höchste Anlageneffizienz

Die angewendeten Projektlösungen umfassen nicht nur den Einsatz von elektronischen Expansionsventilen, sondern auch über Modbus verwaltete Scroll-Verdichter mit variabler Geschwindigkeit und EC-Ventilatoren mit elektronischer Umschaltung. Diese Eigenschaften erlauben eine sehr sorgfältige Erfassung Verwaltung und Einstellung der Betriebsparameter und damit der thermohygrometrischen Werte im Serverraum, mit hohen Energieeffizienzniveaus.

LUFTGEKÜHLT MIT

DUAL COOLING

zugleich die Zuverlässigkeit einer doppelten Quelle und den einfachen Betrieb der HiRef Schränke. Mit der Steuerung auf dem Gerät kann der Kunde die Quelle nach verschiedenen Logiken wählen.

0201 | 0251 | 0301 | 0381 | 0441 | 0501 | 0551 | 0641 | 0701 | 0801 | 0852 | 0962 Kälteleistu [kW] 23,5 27,9 36 41 46,1 52,9 61,4 63,3 75,7 85 90,4 14,4 4,1 4,1 Kälteleistung Kaltwasser [kW] 10.7 31.6 42.7 42.7 42.7 57.9 57.9 68 68 93.1 **SHR Kaltwasser** [kW] 7.3 9,2 11,6 14,7 15,2 17,7 18,2 23,1 25,7 25,5 27,9 Leistungsaufnahme insgesam 3,9 6,2 Lufttemperatur 30°C rel. Feuchtigkeit 35% Außenluft 35°C / Wasser 10°C-15°C [kW] EER 3,9 4,3 3,8 3,3 3,9 3,7 3,8 3,5 3,8 Kälteleistung Kaltwasser [kW] 10,5 31,4 31,4 42,3 42,3 42,3 57,5 57,5 67,5 67,5 92,4 92,4 1 SHR Kaltwasser 1 1 1 1 1 1 [kW] 6,1 7,2 9,1 11,4 14,3 14,8 17,4 17,9 Leistungsaufnahme insgesamt 3,8 22,5 25,1 25 27,4 Kälteleistung [kW] 11.7 28,8 33,4 38,5 43 51,3 51,6 0.9 0,9 0.9 0,9 0,9 0.8 0.9 3,6 3.8 3,5 3,5 3,4 3,5 3,3 Kälteleistung Kaltwasser [kW] 8,2 29,1 29,1 40,8 40,8 40,8 56 56 65,8 65,8 90 90 **SHR Kaltwasser** 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 0,8 [kW] Leistungsaufnahme insgesamt 3.7 6.1 7.1 8.9 11.2 14 14.4 17.2 17.6 22.1 24.5 24.5 26.9 Lp @ Nominal rpm; dist.= 2 m 0=2 dB(A) 54 70 70 70 74 74 75 77 77 75 76 75 75 Abmessungen [BxHxT] mm 2510x2000x890 Abmessungen Version 1270x2000x890 2020x2000x890 mm 900x1875x600 1010x2000x890 1760x2000x890 2510x2000x890 Displacement [BxHxT] V/Ph/Hz 400 / 3+N / 50 Stromversorgung

Leistungsdaten der Downflow-Versionen in Kombination mit externem Verflüssiger HiRef Standard. Auch mit 60 Hz Versorgung verfügbar.

Höhe Displacement-Modelle 2125 mm für die Größe 0131.

CHiRef

Plattform **TRF Evolution**

NRG D/K/Q

NRG K		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			L	ufttempe	ratur 35°C	rel. Feuc	htigkeit 3	0% Wasse	er 40°C-4	5°C / Was	ser 15°C-2	20°C		
Kälteleistung	[kW]	14,1	24,7	29,1	37,2	42,1	48,3	55,1	62,4	64,5	77	87	94,4	100,8
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,9	5,6	5,3	5,4	4,5	4,1	4,7	4,2	4,4	3,9	4,4	5,1	4,5
Kälteleistung Kaltwasser	[kW]	10,7	31,6	31,6	42,7	42,7	42,7	57,9	57,9	68	68	93,1	93,1	93,1
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insgesamt	[kW]	4	5,6	6,6	8,5	10,9	13,3	14,1	17,2	17,4	22,3	24,5	23	26,9
			L	ufttempe	ratur 30°0	c rel. Feuc	htigkeit 3	5% Wass	er 40°C-4	5°C / Was	ser 10°C-1	15°C		
Kälteleistung	[kW]	12,7	22,2	26,1	33,4	38,1	43,7	49,4	56,3	58,6	69,9	78,8	86	91
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		3,6	4,9	4,7	4,8	4,1	3,8	4,2	3,8	4	3,6	4	4,7	4,1
Kälteleistung Kaltwasser	[kW]	10,5	31,4	31,4	42,3	42,3	42,3	57,5	57,5	67,5	67,5	92,4	92,4	92,4
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insgesamt	[kW]	4	5,7	6,7	8,6	10,9	13,3	14,1	17,2	17,4	22,2	24,3	23,2	26,9
			l	ufttempe	ratur 24°	C rel. Feuc	htigkeit !	50% Wass	er 40°C-4	5°C / Wa	sser 7°C-1	2°C		
Kälteleistung	[kW]	11,4	19,3	23	29,4	33,8	40,1	43,6	51,2	52	64,5	69,7	76	83,1
SHR		0,9	1	1	1	0,9	0,9	0,9	0,9	0,9	0,8	0,9	0,9	0,9
EER		3,2	4,2	4,1	4,2	3,6	3,5	3,7	3,4	3,5	3,3	3,6	4,1	3,8
Kälteleistung Kaltwasser	[kW]	8,2	29,1	29,1	40,8	40,8	40,8	56	56	65,8	65,8	90	90	90
SHR Kaltwasser		1	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Leistungsaufnahme insgesamt	[kW]	4	5,8	6,7	8,6	10,9	13,2	14	17,2	17,4	22	24,1	23,2	26,8
Nennluftleistung	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	54	70	70	70	74	74	75	77	77	75	76	75	75
Abmessungen [BxHxT]	mm	900x1875x600	1010x20	000x890	12	270x2000x8	90	1760x20	000x890	2020x2	000x890	2	510x2000x8	90
Abmessungen Version Displacement [BxHxT]	mm	900x1875x600	1010x20	00x890	12	270x2000x8	90	1760x20	00x890	2020x2	000x890	2	510x2000x8	90
Stromversorgung	V/Ph/Hz						400 /	3+N / 50						

Leistungsangaben bezogen auf die Downflow-Versionen. Auch mit 60 Hz Versorgung verfügbar. Höhe Displacement-Modelle 2125 mm für die Größe 0131.

NRG Q		0131	0201	0251	0301	0381	0441	0501	0551	0641	0701	0801	0852	0962
			1	ufttempe	ratur 35°(rel. Feuc	htigkeit 3	0% Wass	er 15°C-30	°C / Was	s er 15° C-2	0°C		
Kälteleistung	[kW]	15,4	26,9	31,7	40,5	45,7	52,7	60,2	67,7	70,7	83,3	94,9	103,8	110,3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		6,3	9,5	8,7	8,8	6,8	6,1	7	6,1	6,5	5,6	6,3	8,2	6,9
Kälteleistung Kaltwasser	[kW]	10,7	31,6	31,6	42,7	42,7	42,7	57,9	57,9	68	68	93,1	93,1	93,1
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insgesamt	[kW]	2,9	4	4,8	6,2	8,3	10,3	10,9	13,4	13,5	17,7	19,7	17,3	20,5
			ı	.ufttempe	ratur 30°	C rel. Feuc	htigkeit 3	5% Wass	er 15°C-30	o°C / Was	ser 10°C-1	5°C		
Kälteleistung	[kW]	13,9	24,5	28,8	36,7	41,7	48,2	54,9	61,8	64,3	76,6	86,5	94,1	101,1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1
EER		5,6	8	7,5	7,6	6,1	5,5	6,3	5,5	5,8	5,2	5,8	7,2	6,3
Kälteleistung Kaltwasser	[kW]	10,5	31,4	31,4	42,3	42,3	42,3	57,5	57,5	67,5	67,5	92,4	92,4	92,4
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insgesamt	[kW]	2,9	4,2	5	6,4	8,4	10,3	10,9	13,5	13,7	17,5	19,6	17,7	20,7
				Lufttempe	ratur 24°	C rel. Feu	htigkeit !	50% Wass	er 15°C-3	0°C / Was	ser 7°C-1	2°C		
Kälteleistung	[kW]	12,9	21,4	25,6	32,4	38	45,3	49,6	57,6	57,8	71,5	77,8	86,2	94,3
SHR		0,9	1	0,9	1	0,9	0,8	0,9	0,8	0,9	0,8	0,9	0,9	0,8
EER		5,2	6,6	6,4	6,4	5,5	5,2	5,7	5,1	5,2	4,8	5,2	6,5	5,8
Kälteleistung Kaltwasser	[kW]	8,2	29,1	29,1	40,8	40,8	40,8	56	56	65,8	65,8	90	90	90
SHR Kaltwasser		1	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
Leistungsaufnahme insgesamt	[kW]	2,9	4,4	5,1	6,6	8,5	10,3	11	13,6	13,8	17,5	19,5	18	20,9
Nennluftleistung	m³/h	3700	8000	8000	10800	10800	10800	14300	14300	16800	16800	23000	23000	23000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	54	70	70	70	74	74	75	77	77	75	76	75	75
Abmessungen [BxHxT]	mm	900x1875x600	1010x20	00x890	12	70x2000x89	90	1760x20	00x890	2020x2l	000x890	2!	510x2000x89	90
Abmessungen Version Displacement [BxHxT]	mm	900x1875x600	1010x20	00x890	12	70x2000x89	90	1760x20	00x890	2020x2	000x890	2!	510x2000x89	30
Stromversorgung	V/Ph/Hz						400 /	3+N / 50						

Leistungsangaben bezogen auf die Downflow-Versionen. Auch mit 60 Hz Versorgung verfügbar. Höhe Displacement-Modelle 2125 mm für die Größe 0131.

Die Geräte der Baureihe **TREF DX** sind Präzisionsklimaschränke mit Direktverdampfung mit Scroll-Verdichtern On-Off, die für die Installation in mittelgroßen bis großen technologischen Umgebungen wie Serverräume und Labors gedacht sind, oder für Anwendungen, die eine präzise Kontrolle der thermohygrometrischen Parameter und einen 24-Stunden-Dauerbetrieb verlangen. Das interne Design und die Wahl der Komponenten dienen in erster Linie der Energieeffizienz, um den Gesamtstromverbrauch des Systems zugunsten des PUE-Wertes (Power Usage Effectiveness) des Rechenzentrums zu optimieren.

Vielseitige und flexible Baureihe

Dank der verschiedenen verfügbaren Kältekonfigurationen passt sich die Baureihe **TREF DX** zahlreichen Anwendungen im Bereich der Klimatisierung von Rechenzentren an.

Luftkühluna mit externem Verflüssiger TREFW

Wasserkühlung oder Dry-Cooler

TREF Z

Wasserkühlung mit Leitungswasser (15°C)

TREF F

Wasserkühlung und indirektes Free Cooling mit Wasser

TREF D

Luftkühluna mit externem Verflüssiger und Dual Cooling

TREF K

Wasserkühlung mit Verdampfungsturmoder Dry-Cooler-Wasser und **Dual Cooling**

TREF Q

Wasserkühlung mit Leitungswasser (15°C) und **Dual Cooling**

Die **TREF DX A** sind die luftgekühlten Präzisionsklimaschränke der Baureihe TREF, die im Bereich der Klimatisierung von Rechenzentren umfangreich eingesetzt werden. Diese luftgekühlte Lösung ist durch das Fehlen anderer Hilfskreise und Pumpen nicht nur anlagenmäßig einfach konzipiert, sondern auch einfach zu verwalten, da der Kältekreis vom Klimaschrank kontrolliert wird; außerdem können die interne Einheit und der externe Verflüssiger leicht installiert werden.

- Kältemittel R410A, Auch mit R513A und R134a verfügbar
- EC-Ventilatoren
- Scroll-Verdichter
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäß Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (∆p control)
- Elektronische Expansionsventile
- Bausatz große Entfernungen für einen optimalen Betrieb, falls das interne und das externe Gerät weit voneinander entfernt sind
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt

Sicherheit im Serverraum

Alle Modelle der Baureihe TREF DX A sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

Green

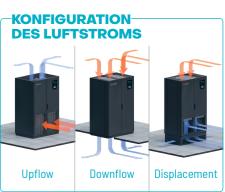
HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht brennbarer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte TREF DX A sind mit den Kältemitteln R134a und R513A verfügbar.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Zwei Kreisläufe

Bereits für die niedrigen Leistungen sind Versionen mit zwei Kreisläufen verfügbar. Diese Lösung bietet die maximale Redundanz des Geräts und sichert einen kontinuierlichen Betrieb, eine präzisere Abgabe der Kälteleistung und eine geringere Aufnahme des Rechenzentrums bei Teillasten.



Externe Verflüssiger

Alle Geräte können mit externen HiRef Verflüssigern kombiniert werden und es stehen verschiedene Kombinationen zur Wahl, die alle Anlagenbedürfnisse erfüllen. Die externen Oversize-Verflüssiger eignen sich ideal für heißere Umgebungen, in denen die Verflüssigungstemperatur unter Kontrolle zu halten ist, während die Compact-Geräte geringe Abmessungen und Verbrauchswerte aufweisen. Die mit Doppelkreislauf-Einheiten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und Redundanz der Anlage zu sichern, oder mit doppeltem Kältekreis, um die Installationsräume und Kosten zu reduzieren.

TREF DX A		0201	0251	0281	0311	0401	0272	0302	0362	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
						Lufti	temper	atur 30	°C rel. I	Feuchti	gkeit 3	5% Auf	Benluft (35°C					
Kälteleistung	[kW]	25,6	28,7	33	36,4	45,5	30,1	41	44,5	48,6	52,8	62,3	67,5	70,8	81,3	88,3	97,7	106,8	134,7
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
EER		4,1	4,6	4,3	4,6	4,2	4,9	4,8	4,3	4,1	4	4,2	3,9	4	4,2	3,9	4,5	4,2	3,9
Leistungsaufnahme insg.	[kW]	7,3	7,3	8,9	9,3	12,7	8,1	10,4	12,3	14	15,2	17,5	19,8	20,7	22,4	25,6	24,9	28,9	37,5
			Lufttemperatur 24°C rel. Feuchtigkeit 50% Außenluft 35°C																
Kälteleistung	[kW]	22,8	26,1	30,2	34,1	41,4	27,4	35,8	39,1	44,1	49	58,3	63,8	65	75,6	83,1	89,6	98,7	126,6
SHR		1	0,9	0,9	0,9	1	1	1	1	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,8
EER		3,8	4,3	4	4,3	3,9	4,5	4,4	3,9	3,8	3,8	4	3,8	3,8	4	3,7	4,2	4	3,7
Leistungsaufnahme insg.	[kW]	7,1	7,2	8,8	9,2	12,5	8,1	10,2	12	13,7	15	17,3	19,6	20,3	22	25,4	24,6	28,2	37,3
Nennluftleistung	m³/h	6800	6800	7280	7280	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Lp @ Nominal rpm; dist.= 2 m 0=2	dB(A)	55	56	58	58	63	59	61	62	65	65	67	67	68	68	68	76	76	80
Abmessungen [BxHxT]	mm	1010x20	000x805	1270x20	00x805			1760x20	00x805			2020x20	000x805	251	0x2000x	805	2510x20	00x950	3160x2000x950
Abmessungen Version Displacement [BxHxT]		1010x22	250x805	1270x22	50x805			1760x22	250x805			2020x2	250x805	251	0x2250x	805	2510x22	250x950	3160x2250x950
Stromversorgung	V/Ph/Hz									4(00 / 3+N	/ 50							

Auch mit 60 Hz Versorgung verfügbar.

Leistungsdaten der Downflow-Versionen mit Kältemittel R410A in Kombination mit externen Verflüssigern HiRef Standard. Höhe Displacement-Modelle 2250 mm.

Die Geräte**TREF DX W/Z** sind wassergekühlte

Die Verflüssigung erfolgt dank eines gelöteten

Plattenwärmetauschers aus Edelstahl AISI 304.

-MIT LEITUNGSWASSER

GEKÜHLT

-WASSERGEKÜHLT

Präzisionsklimaschränke. Die Baureihe W nutzt Dry-Cooler-Wasser. Die **Baureihe Z** nutzt Leitungswasser

oder Grundwasser mit niedriger Temperatur (15°C).

Die TREF dieser Baureihen sind Monoblock-Geräte, in

deren Innern sich der gesamte Kältekreis konzentriert.

TREF DX W/Z

C)HiRef

RECHENZENTREN INDUSTRIE WASSERGEKÜHLTE **PRÄZISIONSKLIMASCHRÄNKE**

TREF DX W > 23 - 138 kW

TREF DX Z > 27 - 153 kW

FÜR RECHENZENTREN

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

mit R513A und R134a verfügbar EC-Ventilatoren

Kältemittel R410A, Auch

- Scroll-Verdichter
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

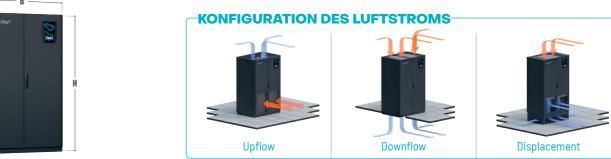
Auf Anfrage

- Luftfilter Klasse G3 standardmäßig Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (∆p control)
- Elektronische Expansionsventile

Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

Sicherheit im Serverraum


Alle Modelle der Baureihe **TREF DX W/ Z** sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht brennbarer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte TREF DX W/ Z sind mit den Kältemitteln R134a und R513A

Zwei Kreisläufe

Bereits für die niedrigen Leistungen sind Versionen mit zwei Kreisläufen verfügbar. Diese Lösung bietet die maximale Redundanz des Geräts und sichert einen kontinuierlichen Betrieb, eine präzisere Abgabe der Kälteleistung und eine geringere Aufnahme des Rechenzentrums bei Teillasten.

									0362		1 . 11 70	0/ W.		E00					1204
,	fr.w1	00.7	00.0	70.5	71.0	_	_		°C rel. F			_	_		77.0	04.0	07.7	107.0	177.0
Kälteleistung SHR	[kW]	26,3	28,2	32,5 1	34,9 1	48,5	30,8	39,2	44,4	48,5	52,2	59,4 1	65,5 1	71,9 1	77,6	84,6	93,7	104,8	137,9
EER		4,7	4,7	4,6	4,4	4.7	1 5,3	1 5	4,6	4,3	4,3	4,2	4,1	4,5	4,2	1	4,7	4,3	4,2
.eistungsaufnahme insg.	[kW]	6,7	7,1	8,3	9,2	12,4	7,8	9,9	11,6	13,2	14,1	16,8	18,6	18,9	21,4	24	23,3	27,4	36
Leistungsaumanne mag.	[vw]	0,1	1,1	0,0	U,Z				°C rel. F					-	21,7	27	20,0	21,7	00
(älteleistung	[kW]	23,4	25,6	29.6	32,6	43,8	28,1	34,5	39,5	43,6	48	% Wass 54,9	61,2	65,2	71,9	79	84.7	96,5	128,8
HR	[[,11]	1	0,9	0,9	0.9	1	1	1	1	0,9	0,9	0,9	0,9	0.9	0,9	0,8	0,9	0,9	0,8
EER		4,2	4,2	4,2	4,1	4,2	4,8	4,4	4,1	3,9	3,9	3,9	3,8	4,1	3,9	3,8	4,3	4	3,9
.eistungsaufnahme insg.	[kW]	6,7	7,2	8,4	9,3	12,4	7,9	9,9	11,6	13,2	14,2	16,8	18,7	19,1	21,4	24	23,1	27,2	36,1
lennluftleistung	m³/h	6800	6800	7280	7280	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
p @ Nominal rpm; dist.= 2 m Q=2	dB (A)	55	56	58	58	63	59	61	62	65	65	67	67	68	68	68	76	76	80
Ahmaaannan [DullyT]		1010,-20	חחייטטב	107000	00,000			1700,00	000,000			2020-20	חחייטטב	0.00	0.2000	005	2510220	חחייטבט	3160x
Abmessungen [BxHxT]	mm	1010x20	CUOXUUU	1270x20	CUOXUU			1/buxzu	000x805			2020x20	CUBXUUL	201	0x2000x	BUD	ZOIUXZU	000x950	2000) 950
																			3160x
Abmessungen Version	mm	1010x22	50x805	1270x22	50x805			1760x22	250x805			2020x22	250x805	251	0x2250x	805	2510x22	250x950	2250>
Displacement [BxHxT]																			950
Stromversorgung	V/Ph/Hz									400	/3+N/	50							
TREF DX Z		0201	0251	0281	0311	0/01	0070	0700	0362	0/00	0/50	0570	0000	0000	0000	0700	0852	1002	1204
I KEF DA Z		UZUI	UZĐI	UZOI	UƏII	U 4 UI	UZIZ	UJUZ	0302	U422	U45Z	UDJZ	U59Z	UDUZ	0092	U/0Z	U05Z	IUUZ	IZU-
						_	<u> </u>)°C rel. I										
(älteleistung	[kW]	29,8	31,6	35	37,4	53,3	35,5	43	49,7	56,4	57,6	66,8	72,5	80,6	87,4	96,5	106,1	118,1	153,1
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0,9
EER	[kW]	7,2 5,3	7,8	7,1	6,7	7,4 9,4	8,2 6,4	7,4 7,9	7,1	6,8 10,4	6,9 10,4	6,6 12,8	6,3 14,1	7,2 14,4	6,8 16,1	6,6 18	6,9 18,9	6,7 21,1	6,8 25,2
aiatungaaufnahma inag															10.1	10	10,9	Z1,1	23,2
Leistungsaufnahme insg.	[1111]	0/0	5,2	6,3	6,9				9,1										
						Luft	ttemper	atur 24	°C rel. I	Feuchti	gkeit 50	% Was	ser 15-3	0°C					
Kälteleistung	[kW]	27,3	29,3	32,8	35,3	Luft 49,5	ttemper 30,8	atur 24 38,2	4°C rel. I	Feuchti 52,4	g <mark>keit 50</mark> 54,2	0% Was 62,9	s er 15-3 68,4	0°C 75,4	82,4	90,8	98,7	110,7	144,1
Leistungsaufnahme insg. Kälteleistung		27,3 0,9	29,3 0,9	32,8 0,9	35,3 0,8	Luft 49,5 0,9	ttemper 30,8 1	atur 24 38,2 1	4°C rel. 1 45 0,9	Feuchti 52,4 0,9	g <mark>keit 50</mark> 54,2 0,9	62,9 0,9	ser 15-3 68,4 0,8	0°C 75,4 0,9	82,4 0,9	0,9	0,9	0,8	0,8
(älteleistung SHR EER	[kW]	27,3 0,9 6,6	29,3 0,9 7	32,8 0,9 6,5	35,3 0,8 6,2	Luft 49,5 0,9 6,7	30,8 1 7,1	38,2 1 6,6	4°C rel. I 45 0,9 6,4	52,4 0,9 6,3	g <mark>keit 50</mark> 54,2 0,9 6,4	0% Was 62,9 0,9 6,1	ser 15-3 68,4 0,8 5,9	0°C 75,4 0,9 6,7	82,4 0,9 6,4	0,9 6,1	0,9 6,6	0,8 6,3	0,8 6,3
Kälteleistung SHR EER eistungsaufnahme insg.	[kW]	27,3 0,9 6,6 5,3	29,3 0,9 7 5,3	32,8 0,9 6,5 6,4	35,3 0,8 6,2 7	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9	45 0,9 6,4 9,1	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13	ser 15-3 68,4 0,8 5,9 14,3	0°C 75,4 0,9 6,7 14,6	82,4 0,9 6,4 16,2	0,9 6,1 18,2	0,9 6,6 18,6	0,8 6,3 21,2	0,8 6,3 25,6
Kälteleistung SHR EER Leistungsaufnahme insg.	[kW]	27,3 0,9 6,6 5,3	29,3 0,9 7 5,3	32,8 0,9 6,5 6,4 7280	35,3 0,8 6,2 7	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9	45 0,9 6,4 9,1	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13	ser 15-3 68,4 0,8 5,9 14,3	0°C 75,4 0,9 6,7 14,6	82,4 0,9 6,4 16,2	0,9 6,1 18,2	0,9 6,6 18,6	0,8 6,3 21,2	0,8 6,3 25,6
Kälteleistung SHR EER Leistungsaufnahme insg.	[kW]	27,3 0,9 6,6 5,3	29,3 0,9 7 5,3	32,8 0,9 6,5 6,4	35,3 0,8 6,2 7	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9	45 0,9 6,4 9,1	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13	ser 15-3 68,4 0,8 5,9 14,3	0°C 75,4 0,9 6,7 14,6	82,4 0,9 6,4 16,2	0,9 6,1 18,2	0,9 6,6 18,6	0,8 6,3 21,2	0,8 6,3 25,6 24000 80
Cälteleistung SHR SER Leistungsaufnahme insg. Jennluftleistung p @ Nominal rpm; dist.= 2 m Q=2	[kW] [kW] m³/h dB (A)	27,3 0,9 6,6 5,3 6800 55	29,3 0,9 7 5,3 6800 56	32,8 0,9 6,5 6,4 7280 58	35,3 0,8 6,2 7 7280 58	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9 12950 61	4°C rel. I 45 0,9 6,4 9,1 12950 62	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13 14150 67	ser 15-3 68,4 0,8 5,9 14,3 14150 67	75,4 0,9 6,7 14,6	82,4 0,9 6,4 16,2 19415 68	0,9 6,1 18,2 19415 68	0,9 6,6 18,6 21500 76	0,8 6,3 21,2 21500 76	0,8 6,3 25,6 24000 80 3160x
Cälteleistung SHR SER Leistungsaufnahme insg. Nennluftleistung p @ Nominal rpm; dist.= 2 m Q=2	[kW]	27,3 0,9 6,6 5,3	29,3 0,9 7 5,3 6800 56	32,8 0,9 6,5 6,4 7280	35,3 0,8 6,2 7 7280 58	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9 12950 61	45 0,9 6,4 9,1	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13	ser 15-3 68,4 0,8 5,9 14,3 14150 67	75,4 0,9 6,7 14,6	82,4 0,9 6,4 16,2	0,9 6,1 18,2 19415 68	0,9 6,6 18,6 21500 76	0,8 6,3 21,2	0,8 6,3 25,6 24000 80 3160x
Kälteleistung SHR EER Leistungsaufnahme insg. Nennluftleistung p @ Nominal rpm; dist.= 2 m Q=2 Abmessungen [BxHxT]	[kW] [kW] m³/h dB (A)	27,3 0,9 6,6 5,3 6800 55	29,3 0,9 7 5,3 6800 56	32,8 0,9 6,5 6,4 7280 58	35,3 0,8 6,2 7 7280 58	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9 12950 61	4°C rel. I 45 0,9 6,4 9,1 12950 62	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13 14150 67	ser 15-3 68,4 0,8 5,9 14,3 14150 67	75,4 0,9 6,7 14,6	82,4 0,9 6,4 16,2 19415 68	0,9 6,1 18,2 19415 68	0,9 6,6 18,6 21500 76	0,8 6,3 21,2 21500 76	0,8 6,3 25,6 24000 80 3160» 2000: 950 3160»
Kälteleistung SHR EER Leistungsaufnahme insg. Nennluftleistung	[kW] [kW] m³/h dB (A)	27,3 0,9 6,6 5,3 6800 55	29,3 0,9 7 5,3 6800 56	32,8 0,9 6,5 6,4 7280 58	35,3 0,8 6,2 7 7280 58	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9 12950 61	4°C rel. I 45 0,9 6,4 9,1 12950 62	52,4 0,9 6,3 10,4	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13 14150 67	ser 15-3 68,4 0,8 5,9 14,3 14150 67	75,4 0,9 6,7 14,6 19415 68	82,4 0,9 6,4 16,2 19415 68	0,9 6,1 18,2 19415 68	0,9 6,6 18,6 21500 76 2510x20	0,8 6,3 21,2 21500 76	0,8 6,3 25,6 24000 80 3160x 20000 950 3160x 22500
Cälteleistung SHR SER Leistungsaufnahme insg. Wennluftleistung p @ Nominal rpm; dist.= 2 m Q=2 Abmessungen [BxHxT]	[kW] [kW] m³/h dB (A) mm	27,3 0,9 6,6 5,3 6800 55	29,3 0,9 7 5,3 6800 56	32,8 0,9 6,5 6,4 7280 58	35,3 0,8 6,2 7 7280 58	Luft 49,5 0,9 6,7 9,5	30,8 1 7,1 6,5	38,2 1 6,6 7,9 12950 61	4°C rel. I 45 0,9 6,4 9,1 12950 62	52,4 0,9 6,3 10,4 12950 65	54,2 0,9 6,4 10,6	62,9 0,9 6,1 13 14150 67 2020x20	ser 15-3 68,4 0,8 5,9 14,3 14150 67	75,4 0,9 6,7 14,6 19415 68	82,4 0,9 6,4 16,2 19415 68	0,9 6,1 18,2 19415 68	0,9 6,6 18,6 21500 76 2510x20	0,8 6,3 21,2 21500 76 000x950	0,8 6,3 25,6 24000 80 31600 20000 950 31600

Die Geräte **TREF DX F** sind wassergekühlte Präzisionsklimaschränke, die in der Lage sind, die Wirkung des indirekten Free Cooling mit Wasserkühlung zu nutzen. Die Baureihe F nutzt das Dry-Cooler-Wasser sowohl als Free Cooling Kältequelle, als auch als Wärmeaustauschmedium für die Verflüssigung des Kältekreises. Die TREF F sind Monoblock-Geräte, in deren Innern sich der gesamte Kältekreis konzentriert. Die Verflüssigung erfolgt dank eines gelöteten Plattenwärmetauschers aus Edelstahl AISI 304.

Maximale Energieeinsparung

In Zeiten, in denen die Außenluft kälter ist als die warme Luft im EDV-Raum, versorgt das vom Dry-Cooler erzeugte Kaltwasser direkt das Wärmetauscherregister, das in der Lage ist, einen Teil oder 100% der erforderliche Kälteleistung

Bevor es zum Dry-Cooler zurückfließt, wird das Wasser im Innern des Plattenwärmetauschers für den Verdichter wiederverwendet. Der gesamte Prozess wird von einem 3-Wege-Ventil geregelt, das direkt von der HiRef-Software gesteuert wird, eine maximale Free Cooling Wirkung erzeugt und den Kältekreis kontrolliert. Dadurch wird die Arbeit des Verdichters erheblich reduziert, bis er im vollen Free Cooling Zustand mit einem bedeutend herabgesetzten PUE-Wert des Systems abschaltet.

Sicherheit im Serverraum

Alle Modelle der Baureihe **TREF DX F** sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

- Kältemittel R410A. Auch mit R513A und R134a verfügbar
- EC-Ventilatoren
- Scroll-Verdichter
- Fortgeschrittene Überwachung standardmäßig
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule und Plenumkammer für Kanäle

Auf Anfrage

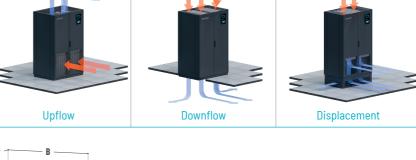
- Luftfilter Klasse G3 standardmäßig Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- · Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (∆p control)
- Elektronische Expansionsventile

CHiRef

Erleichterte Normalwartung

Die gut durchdachte Konstruktion erlaubt auch bei laufendem Betrieb den Zugriff zu den Bauteilen auf der Vorderseite des Geräts. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

KONFIGURATION DES LUFTSTROMS


Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht brennbarer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte **TREF DX F** sind mit den Kältemitteln R134a und R513A verfügbar.

Zwei Kreisläufe

Bereits für die niedrigen Leistungen sind Versionen mit zwei Kreisläufen verfügbar. Diese Lösung bietet die maximale Redundanz des Geräts und sichert einen kontinuierlichen Betrieb, eine präzisere Abgabe der Kälteleistung und eine geringere Aufnahme des Rechenzentrums bei Teillasten.

TREF DX F		0201	0251	0281	0311	0401	0272	0302	0362	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
				Luft		_						C-47°C /			_				
Kälteleistung	[kW]	23,3	25,6	30,1	32,8	46,4	27,9	37,9	42	47	51	58,8	64,4	71,1	76,7	83,4	84,4	93,2	123,6
SHR		1	1	1	1	1	1	1	1	1	1	1	0,9	1	1	1	1	1	0,9
EER		4	4	4,1	3,9	4,3	4,6	4,6	4,2	4	4	4	3,8	4,3	4	3,8	4,1	3,8	3,5
Kälteleistung Free Cooling	[kW]	25	26	31,5	32,7	51,7	40,1	47,8	49,8	51,7	53,6	60,4	62,7	78,3	81,3	84,3	96,5	104	119,1
SHR Free Cooling		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insg.	[kW]	7,1	7,5	8,7	9,6	13,1	8,3	10,5	12,3	14	15	17,6	19,5	20,1	22,6	25,3	24,1	28,3	37,6
				Luft	temper	atur 24	°C rel. F	euchtiq	keit 50	% Was	ser 40°	C-45°C	/ Wasse	er 7°C /	Glykol	30%			
Kälteleistung	[kW]	21,1	23,6	28,2	31,1	42,5	25,9	33,7	37,7	43	47,4	55,5	61,2	65,5	71,8	79,4	78,7	87,8	118,3
SHR		0,9	0,9	0,8	0,8	0,9	1	1	0,9	0,9	0,9	0,8	0,8	0,9	0,8	0,8	0,9	0,8	0,8
EER		3,7	3,8	3,9	3,9	4	4,4	4,2	3,9	3,8	3,8	3,9	3,8	4,1	3,9	3,8	4	3,7	3,5
Kälteleistung Free Cooling	[kW]	27,1	27,1	32,8	34,7	54,8	42,5	48,1	51,8	54,8	60,8	62,8	66,5	86,2	86,2	91	106,3	112,1	142,9
SHR Free Cooling		0,9	0,9	0,9	0,9	0,9	1	1	0,9	0,9	0,8	0,9	0,9	0,9	0,9	0,8	0,8	0,8	0,8
Leistungsaufnahme insg.	[kW]	6,8	7,3	8,4	9,3	12,7	8,2	10,2	11,9	13,6	14,5	17,1	18,9	19,6	21,9	24,5	23,3	27,3	36,5
Nennluftleistung	m³/h	6800	6800	7280	7280	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	56	57	59	59	64	60	62	63	66	66	68	68	69	69	69	77	77	81
Abmessungen [BxHxT]	mm	1010x20	000x805	1270x20	000x805			1760x20	00x805			2020x2	000x805	251	10x2000x	805	2510x20	00x950	3160x 2000x 950
Abmessungen Version Displacement [BxHxT]	mm	1010x22	250x805	1270x22	250x805			1760x22	50x805			2020x2	250x805	251	10x2250x	805	2510x22	50x950	3160x 2250x 950
Stromversorgung	V/Ph/Hz									400	/3+N/5	50							

Auch mit 60 Hz Versorgung verfügbar. / Leistungsangaben bezogen auf die Downflow-Versionen mit Kältemittel R410A. / Höhe Displacement-Modelle 2250 mm.

TREF D/K/Q nur Dual Cooling Geräte. Diese Geräte kombinieren das traditionelle Verdampfungsregister des Kältekreises mit der Kältewirkung des von einem externen Gerät wie der Chiller einlaufenden Kaltwassers. Die Nutzung einer doppelten Quelle garantiert die Kontinuität des Systems und erlaubt jederzeit die Wahl der zur Herabsetzung der Betriebskosten besten Betriebsmethode.

Externe Verflüssiger

Alle Geräte **TRF DX D** können mit externen HiRef Verflüssigern kombiniert werden und es stehen verschiedene Kombinationen zur Wahl, die alle Anlagenbedürfnisse erfüllen.

Die externen Oversize-Verflüssiger eignen sich ideal für heißere Umgebungen, in denen die Verflüssigungstemperatur unter Kontrolle zu halten ist, während die Compact-Geräte geringe Abmessungen und Verbrauchswerte aufweisen. Die mit Doppelkreislauf-Einheiten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und Redundanz der Anlage zu sichern, oder mit doppeltem Kältekreis, um die Installationsräume und Kosten zu reduzieren.

Upflow Downflow Displacement

Kältemittel R410A. Auch mit R513A

EC-Ventilatoren

und R134a verfügbar

- Scroll-Verdichter
- Fortgeschrittene
 Überwachung standardmäßig
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule und Plenumkammer für Kanäle

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (Δp control)
- Elektronische Expansionsventile
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt
- Bausatz große Entfernungen für einen optimalen Betrieb, falls das interne und das externe Gerät weit voneinander entfernt sind

Sicherheit im Serverraum

Alle Modelle der Baureihe **TREF DX D/K/Q** sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Höchste Flexibilität

Die Dual Cooling Geräte bieten zugleich die Zuverlässigkeit einer doppelten Quelle und den einfachen Betrieb der HiRef Schränke. Mit der Steuerung auf dem Gerät ist die Quelle kundenspezifisch nach verschiedenen Logiken wählbar.

Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

Green

HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht brennbarer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte TREF DX D/K/Q sind mit den Kältemitteln R134a und R513A verfügbar.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Zwei Kreisläufe

Bereits für die niedrigen Leistungen sind
Versionen mit zwei Kreisläufen verfügbar. Diese
Lösung bietet die maximale Redundanz des Geräts
und sichert einen kontinuierlichen Betrieb, eine
präzisere Abgabe der Kälteleistung und eine
geringere Aufnahme des Rechenzentrums bei
Teillasten.

TREF DX D		0201	0251	0281	0311	0401	0272	0302	0362	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
					Luftte	mperat	ur 30°C	rel. Fe	uchtigk	eit 35%	Außen	luft 35°	C / Was	ser 10°0	C-15°C				
Kälteleistung	[kW]	23,1	25,8	29,8	33,2	46,3	27,8	37,5	41,1	46,5	49,9	58,9	63,6	69,6	76,9	82,6	85,8	93,2	124,3
SHR		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0,9
EER		3,8	4,2	3,9	4	4,3	4,5	4,5	3,9	3,9	3,8	4	3,7	4	4	3,7	4,3	3,8	3,6
Kälteleistung Kaltwasser	[kW]	29,9	29,9	36,3	36,3	61,5	61,5	61,5	61,5	61,5	61,5	67	67	90,6	90,6	90,6	115,1	115,1	128,3
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insg.	[kW]	7,3	7,3	8,9	9,5	13	8,4	10,6	12,8	14,2	15,5	17,6	20	21	22,6	25,8	23,5	28,3	37,4
			Lufttemperatur 24°C rel. Feuchtigkeit 50% Außenluft 35°C / Wasser 7°C-12°C																
Kälteleistung	[kW]	20,7	23,8	27,5	31	42,3	25,6	33,4	36,6	42	46,3	54,9	60	63,3	71,4	77,4	79,2	86,8	117,3
SHR		0,9	0,9	0,9	0,8	0,9	1	1	1	0,9	0,9	0,8	0,8	0,9	0,9	0,8	0,9	0,8	0,8
EER		3,5	3,9	3,7	3,8	4	4,2	4,1	3,5	3,6	3,6	3,7	3,5	3,7	3,8	3,5	4	3,6	3,4
Kälteleistung Kaltwasser	[kW]	23,2	23,2	23,5	23,5	48,1	48,1	48,1	48,1	48,1	48,1	45	45	67,8	67,8	67,8	86,1	86,1	109,2
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0,9	0,9	0,9
Leistungsaufnahme insg.	[kW]	7,1	7,3	8,8	9,4	12,8	8,3	10,4	12,5	13,9	15,2	17,4	19,8	20,6	22,3	25,5	23,1	27,6	36,9
Nennluftleistung	m³/h	6800	6800	7280	7280	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	56	57	59	59	64	60	62	63	66	66	68	68	69	69	69	77	77	81
Abmessungen [BxHxT]	mm	1010x20	100x805	1270x20	00x805			1760x20	100x805			2020x20	000x805	251	0x2000x	805	2510x20	00x950	3160x 2000x 950
Abmessungen Version Displacement [BxHxT]	mm	1010x22	50x805	1270x22	50x805			1760x22	250x805			2020x22	250x805	251	0x2250x8	305	2510x22	50x950	3160x 2250x 950
Stromversorgung	V/Ph/Hz									400	/3+N/5	50							

Auch mit 60 Hz Versorgung verfügbar.

Leistungsdaten der Downflow-Versionen mit Kältemittel R410A in Kombination mit externen Verflüssigern HiRef Standard. Höhe Displacement-Modelle 2250 mm.

TREF DX D/K/Q

TREF DX K		0201	0251	0281	0311	0401	0272	0302	0362	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
					Lufttem	peratu	r 30°C r	el. Feuc	htigkei	t 35 % V	Vasser •	40°C-45	°C / Wa	asser 10)°C-15°C	;			
Kälteleistung	[kW]	23,9	26	30,6	33,5	47,1	28,8	38,5	43,1	47,7	51,8	60,2	65,9	72,1	77,8	85,4	85,8	95,1	126,4
SHR		1	1	1	1	1	1	1	1	1	1	1	0,9	1	1	1	1	1	0,9
EER		4,3	4,3	4,3	4,2	4,5	4,9	4,9	4,5	4,2	4,3	4,2	4,1	4,5	4,2	4,1	4,3	4	3,8
Kälteleistung Kaltwasser	[kW]	29,9	29,9	36,3	36,3	61,5	61,5	61,5	61,5	61,5	61,5	67	67	90,6	90,6	90,6	115,1	115,1	128,3
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	0,9	1	1	1	1	1	0,9
Leistungsaufnahme insg.	[kW]	6,8	7,3	8,4	9,3	12,6	8,1	10,1	11,8	13,5	14,4	17	18,8	19,4	21,8	24,4	23,3	27,4	36,2
					Luftten	nperatu	r 24°C ı	rel. Feu	chtigke	it 50 % '	Wasser	40°C-4	5°C / W	asser 7	°C-12°C				
Kälteleistung	[kW]	21,2	23,7	28,3	31,3	42,4	26	33,9	38	43	47,7	55,7	61,5	65,3	72,1	79,8	79,1	88,3	118,9
SHR		0,9	0,9	0,8	0,8	0,9	1	1	0,9	0,9	0,9	0,8	0,8	0,9	0,8	0,8	0,9	0,8	0,8
EER		3,8	3,9	4	3,9	4,1	4,4	4,3	4	3,8	3,9	3,9	3,8	4,1	3,9	3,8	4	3,7	3,6
Kälteleistung Kaltwasser	[kW]	23,2	23,2	23,5	23,5	48,1	48,1	48,1	48,1	48,1	48,1	45	45	67,8	67,8	67,8	86,1	86,1	109,2
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0,9	0,9	0,9
Leistungsaufnahme insg.	[kW]	6,8	7,3	8,4	9,3	12,7	8,1	10,1	11,8	13,5	14,4	17	18,8	19,5	21,8	24,4	23,1	27,1	36,3
Nennluftleistung	m³/h	6800	6800	7280	7280	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	56	57	59	59	64	60	62	63	66	66	68	68	69	69	69	77	77	81
Abmessungen [BxHxT]	mm	1010x20	000x805	1270x20	100x805			1760x20	000x805			2020x20	000x805	251	0x2000x	805	2510x20	000x950	3160x 2000x 950
Abmessungen Version Displacement [BxHxT]	mm	1010x22	250x805	1270x22	!50x805			1760x22	250x805			2020x22	250x805	251	0x2250x	805	2510x22	250x950	3160x 2250x 950
Stromversorgung	V/Ph/Hz									400	/3+N/5	50							

Leistungsangaben bezogen auf die Downflow-Versionen – Auch mit 60 Hz Versorgung verfügbar. Höhe Displacement-Modelle 2250 mm.

TREF DX Q		0201	0251	0281	0311	0401	0272	0302	0362	0422	0452	0532	0592	0602	0692	0762	0852	1002	1204
					Luftten	peratu	r 30°C r	el. Feu	htigkei	t 35% \	Wasser	15°C-30	°C / Wa	sser 10	°C-15°C				
Kälteleistung	[kW]	27,2	28,7	34,1	37,4	52,3	34,9	44,6	49,4	54,4	57,9	67,1	73,6	79,3	87	95,6	95,2	105,4	143,3
SHR		1	1	0,9	0,9	1	1	1	1	1	1	0,9	0,9	1	1	0,9	1	0,9	0,9
EER		6,6	6,9	6,8	6,6	7,2	8,1	7,7	7,1	6,6	7	6,6	6,4	7,1	6,8	6,5	6,3	6	6,3
Kälteleistung Kaltwasser	[kW]	29,9	29,9	36,3	36,3	61,5	61,5	61,5	61,5	61,5	61,5	67	67	90,6	90,6	90,6	115,1	115,1	128,3
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Leistungsaufnahme insg.	[kW]	5,3	5,4	6,3	7	9,5	6,5	8	9,2	10,5	10,6	12,9	14,2	14,7	16,3	18,3	18,5	21,1	25,7
					Luftten	nperatu	r 24°C	rel. Feu	chtigke	it 50 %	Wasser	15°C-30	D°C / Wa	asser 7	°C-12°C				
Kälteleistung	[kW]	24,9	26,9	31,9	35	48,6	30,6	39,5	45,1	50,6	54,1	63,2	68,8	74,1	81,9	90,2	89	98,7	136,2
SHR		0,8	0,8	0,8	0,8	0,8	1	0,9	0,9	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,7
EER		6	6,3	6,2	6,1	6,6	7	6,8	6,4	6,1	6,4	6,1	5,9	6,5	6,3	6	6	5,6	5,9
Kälteleistung Kaltwasser	[kW]	23,2	23,2	23,5	23,5	48,1	48,1	48,1	48,1	48,1	48,1	45	45	67,8	67,8	67,8	86,1	86,1	109,2
SHR Kaltwasser		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0,9	0,9	0,9
Leistungsaufnahme insg.	[kW]	5,3	5,4	6,4	7	9,6	6,6	8	9,2	10,5	10,7	13	14,3	14,9	16,5	18,4	18,3	21,1	25,8
Nennluftleistung	m³/h	6800	6800	7280	7280	12950	12950	12950	12950	12950	12950	14150	14150	19415	19415	19415	21500	21500	24000
Lp @ Nominal rpm; dist.= 2 m 0=2	dB (A)	56	57	59	59	64	60	62	63	66	66	68	68	69	69	69	77	77	81
Abmessungen [BxHxT]	mm	1010x20	000x805	1270x20	000x805			1760x20	000x805			2020x20	000x805	251	0x2000x	805	2510x20	00x950	3160x 2000x 950
Abmessungen Version Displacement [BxHxT]	mm	1010x22	250x805	1270x22	250x805	2020x2250x805 2510x2250x805 2510x2250x805 2510x2250						50x950	3160x 2250x 950						
Stromversorgung	V/Ph/Hz		400 / 3+N / 50																

Auch mit 60 Hz Versorgung verfügbar.

Leistungsangaben bezogen auf die Downflow-Versionen mit Kältemittel R410A.

Höhe Displacement-Modelle 2250 mm.

JREF CW Radial ist das Sortiment der wassergekühlten Präzisionsklimaschränke mit EC-Radialventilatoren für kleine technologische Umgebungen, wie Serverräume und Labors, oder für Anwendungen, die eine präzise Kontrolle der thermohygrometrischen Parameter und einen 24-Stunden-Dauerbetrieb verlangen. Durch eine aufmerksame CFD-Analyse der Strömungsdynamik wurden alle Konstruktionsdetails extrem sorgfältig entwickelt, um Druckverluste am Luftvolumenstrom und damit den Energieverbrauch der Ventilatoren auf ein Minimum zu reduzieren. Die Durchquerungsbereiche der Luft wurden vergrößert, damit die Installations- und Wartungsarbeiten schneller und einfacher durchgeführt werden können.

Erweiterter Filterbereich

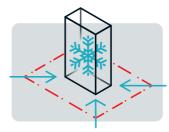
Die auf der gesamten Oberfläche des Registers positionierten Luftfilter sorgen für einen maximalen Filterbereich und minimale Luftstrom-Druckverluste des Geräts

Einstellung der Ventilation

Je nach der Luftverteilungslogik im Serverraum kann auf dem Gerät das geeignetste Ventilationssystem gewählt und eine konstante Luftleistung (airflow control) oder eine konstant verfügbare Überlappung (∆p control) garantiert werden; diese letztgenannte eignet sich

besonders bei Verwendung eines Doppelbodens.

-KONFIGURATION DES LUFTSTROMS



- Temperaturkontrolle mit Heiz- und Nachheizsystemen anhand von Heizwiderständen, zusätzlichem Warmwasser-Register, oder beidem
- Feuchtiakeitskontrolle mittels Ent- und Befeuchtung
- Am Gerät installierter Befeuchter
- · Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast (∆T konstant)
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- · Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck $(\Delta p control)$
- Sofortlesefunktion von Wasserdurchfluss, Eintrittsund Austrittstemperatur des Wassers, oder der abgegebenen Kälteleistung

Hohe Leistungsdichte

Die geringe Aufstellfläche und die hohe Leistung ermöglichen eine große Kälteleistungsdichte Dadurch kann der Platz für die im Raum vorhandenen Geräte minimiert und die verfügbaren Raumverhältnisse bestens genutzt

Doppelkreislauf

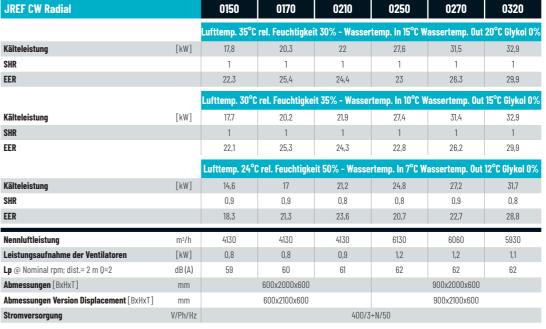
Die wassergekühlten Geräte sind auch mit Doppelkreislauf verfügbar. Diese Ausführung wird von zwei verschiedenen Hydraulikkreisen gespeist, die im Falle einer Betriebsstörung eines der beiden Kreisläufe eine maximale Kontinuität bieten. Jeder Kreislauf ist mit einem Regelventil ausgestattet.

EC-Ventilation

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertsnanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

Lamellenregister mit

Alle Modelle der Baureihe JREF CW Radial sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen und den Abfluss des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.


Zahlreiche Ventilarten hydrophiler Behandlung sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe **JREF** CW Radial haben serienmäßig Regelventile mit Servomotor 0-10V, die in der 2-Wege-Ausführung, mit Anlage mit veränderlicher Leistung, oder in der 3-Wege-Ausführung oder mit Servomotor mit Federrückstellung wählbar sind. Auf Anfrage können außerdem druckunabhängige Ventile montiert werden. Alle diese Ventilarten garantieren höchst präzise Einstellungen und halten das hydronische Gleichgewicht der Anlage aufrecht.

Erleichterte Normalwartung

Die gut durchdachte Konstruktion erlaubt den Zugriff zu den Bauteilen auf der Vorderseite des Geräts. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Leistungsangaben bezogen auf die Downflow-Versionen. Auch mit 60 Hz Versorgung verfügbar. Höhe Displacement-Modelle 2100 mm.

35

JREF DX Radial ist das Sortiment der Präzisionsklimaschränke mit Direktverdampfung und EC-Radialventilatoren für die Installation in kleine technologische Umgebungen, wie Serverräume und Labors, oder für Anwendungen, die eine präzise Kontrolle der thermohygrometrischen Parameter und einen 24-Stunden-Dauerbetrieb verlangen. Das interne Design und die Wahl der Komponenten dienen in erster Linie der Energieeffizienz, um den Gesamtstromverbrauch des Systems zugunsten des PUE-Wertes (Power Usage Effectiveness) des Rechenzentrums zu optimieren.

Vielseitige und flexible Baureihe

Mit verschiedenen Kühl-Konfigurationen verfügbar:

- Luftgekühlte Geräte mit externem Verflüssiger.
- 1it Leitungswasser gekühlte Geräte (15°C) mit vorhandenem Plattenverflüssiger.
- Mit Dry-Cooler-Wasser gekühlte Geräte mit vorhandenem Plattenverflüssiger.

JREF DX A Radial

Die **JREF DX A Radial** sind die luftgekühlten Präzisionsklimaschränke der Baureihe JREF, die im Bereich der Klimatisierung von Rechenzentren umfangreich eingesetzt werden. Diese luftgekühlte Lösung ist durch das Fehlen anderer Hilfskreise und Pumpen nicht nur anlagenmäßig einfach konzipiert, sondern auch einfach zu verwalten, da der Kältekreis vom Klimaschrank kontrolliert wird; außerdem können die interne Einheit und der externe Verflüssiger leicht installiert werden.

-KONFIGURATION DES LUFTSTROMS Downflow Displacement Upflow

- Kältemittel R410A, Auch mit R513A und R134a verfügbar
- EC-Ventilatoren
- Scroll-Verdichter
- Temperaturkontrolle mit Heiz- und Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäß Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (∆p control)
- Elektronische Expansionsventile
- Bausatz große Entfernungen für einen optimalen Betrieb, falls das interne und das externe Gerät weit voneinander entfernt sind
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt

Sicherheit im Serverraum

Alle Modelle der Baureihe JREF DX A Radial sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Green

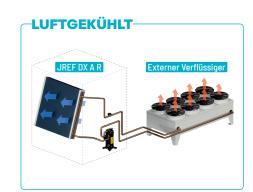
HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht hrennharer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte TJ REF DX A Radial sind mit den Kältemitteln R134a und R513A verfügbar.

EC-Ventilation

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.


Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

Externe Verflüssiger

Alle Geräte können mit externen HiRef Verflüssigern kombiniert werden und es stehen verschiedene Kombinationen zur Wahl, die alle Anlagenbedürfnisse erfüllen. Die externen Oversize-Verflüssiger eignen sich ideal für heißere Umgebungen, in denen die Verflüssigungstemperatur unter Kontrolle zu halten ist, während die Compact-Geräte geringe Abmessungen und Verbrauchswerte aufweisen. Die mit Doppelkreislauf-Einheiten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und Redundanz der Anlage zu sichern, oder mit doppeltem Kältekreis, um die Installationsräume und Kosten zu reduzieren.

JREF DX A Radial		0060	0080	0100	0110	0130	0160	0190	0205	0212
				Lufttempo	eratur 30°C r	el. Feuchtigk	eit 35% Auße	enluft 35°C		
Kälteleistung	[kW]	7,1	9,4	12,1	13,4	15,2	18,9	22,1	24,7	24,9
SHR		1	1	1	1	1	1	1	1	1
EER		3,7	5,1	4,3	4,3	3,6	4,2	4,2	4,4	4,1
Leistungsaufnahme insgesamt	[kW]	1,9	1,8	2,8	3,1	4,2	4,5	5,3	5,6	6,1
				Lufttempe	eratur 24°C r	el. Feuchtigk	eit 50% Auße	enluft 35°C		
Kälteleistung	[kW]	6,5	8,6	10,8	11,9	13,8	16,7	19,7	22,6	22,8
SHR		1	0,9	1	1	0,9	1	0,9	0,9	0,9
EER		3,5	4,8	3,9	3,9	3,4	3,8	3,8	4,1	3,8
Leistungsaufnahme insgesamt	[kW]	2	2	3	3,3	4,5	5,2	6	6,3	6,8
Nennluftleistung	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	49	50	53	53	54	55	56	56	56
Abmessungen [BxHxT]	mm	600x18	75x600				900x1875x600			
Abmessungen Version Displacement [BxHxT]		600x21	25x600				900x2125x600			
Stromversorgung	V/Ph/Hz					400 / 3+N / 50				

Auch mit 60 Hz Versorgung verfügbar Leistungsdaten der Downflow-Versionen mit Kältemittel R410A in Kombination mit externen Verflüssigern HiRef Standard. Höhe Displacement-Modelle 2125 mm.

Die Geräte **JREF W/Z Radial** sind wassergekühlte Präzisionsklimaschränke. Die Baureihe W nutzt Dry-Cooler-Wasser. Die Baureihe Z nutzt Leitungswasser oder Grundwasser mit niedriger Temperatur (15°C). Die JREF dieser Baureihen sind Monoblock-Geräte, in deren Innern sich der gesamte Kältekreis konzentriert. Die Verflüssigung erfolgt dank eines gelöteten Plattenwärmetauschers aus Edelstahl AISI 304.

Alle W-Einheiten können mit den HiRef Dry-Coolern kombiniert werden.

-KONFIGURATION DES LUFTSTROMS Upflow Downflow Displacement

 Kältemittel R410A, Auch mit R513A und R134a verfügbar

www.hiref.it

- EC-Ventilatoren
- Scroll-Verdichter
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (∆p control)
- Elektronische Expansionsventile

Sicherheit im Serverraum

Alle Modelle der Baureihe JREF W/Z Radial sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Die auf der gesamten Baureihe

EC-Ventilation

serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertsnanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen

aufweist.

Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

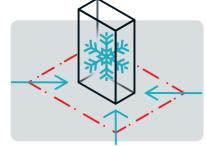
Green

HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht brennbarer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte JREF W/Z Radial sind mit den Kältemitteln R134a und R513A verfügbar.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

JREF DX W Radial		0060	0800	0100	0110	0130	0160	0190	0205	0212
				Lufttemp	eratur 30°C re	el. Feuchtigke	it 35% Wasse	r 40-45°C		
Kälteleistung	[kW]	7,3	8,8	11,8	13,2	15,1	18,7	21,5	23,1	24,2
SHR		1	1	1	1	1	1	1	1	1
EER		4,1	4,2	4	4	3,5	4,2	3,9	3,5	3,7
Leistungsaufnahme insgesamt	[kW]	1,9	2,3	3,2	3,5	4,7	5,3	6,4	7,5	7,4
				Lufttemp	eratur 24°C re	el. Feuchtigke	it 50% Wasse	r 40-45°C		
Kälteleistung	[kW]	6,6	8	10,5	11,5	13,6	16,3	18,9	20,8	22
SHR		1	1	1	1	0,9	1	1	0,9	0,9
EER		3,8	3,8	3,5	3,5	3,2	3,7	3,5	3,2	3,3
Leistungsaufnahme insgesamt	[kW]	1,9	2,3	3,2	3,5	4,7	5,3	6,3	7,4	7,4
Nennluftleistung	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	49	50	53	53	54	55	56	56	56
Abmessungen [BxHxT]	mm	600x18	75x600				900x1875x600			
Abmessungen Version Displacement [BXHXT]		600x21	25x600				900x2125x600			
Stromversorgung	V/Ph/Hz					400 / 3+N / 50				


JREF DX Z Radial		0060	0080	0100	0110	0130	0160	0190	0205	0212
				Lufttemp	eratur 30°C r	el. Feuchtigke	eit 35% Wasse	er 15-30°C		
Kälteleistung	[kW]	7,9	9,9	12,9	14,3	16,9	21,2	24,3	25,9	26,5
SHR		1	1	1	1	1	1	1	1	1
EER		6,4	6,6	5,7	5,6	5,4	6,4	6	5,3	5,1
Leistungsaufnahme insgesamt	[kW]	1,3	1,7	2,5	2,9	3,5	4,2	4,9	5,7	6
				Lufttemp	eratur 24°C r	el. Feuchtigke	eit 50% Wasse	er 15-30°C		
Kälteleistung	[kW]	7,3	9,1	11,7	12,8	15,7	19,1	22,2	24,1	24,5
SHR		0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9
EER		6	6,1	5,2	5	5	5,8	5,5	5	4,7
Leistungsaufnahme insgesamt	[kW]	1,3	1,7	2,5	2,8	3,5	4,1	4,8	5,7	6
Nennluftleistung	m³/h	1785	2150	3530	3530	3700	5100	5100	5100	5100
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	49	50	53	53	54	55	56	56	56
Abmessungen [BxHxT]	mm	600x18	75x600				900x1875x600			
Abmessungen Version Displacement [BXHXT]		600x21	25x600				900x2125x600			
Stromversorgung	V/Ph/Hz					400 / 3+N / 50				

Auch mit 60 Hz Versorgung verfügbar. Leistungsangaben bezogen auf die Downflow-Versionen mit Kältemittel R410A. Höhe Displacement-Modelle 2125 mm.

JREF CW Zentrifugal ist das Sortiment der wassergekühlten Präzisionsklimaschränke mit AC-Zentrifugalventilatoren für kleine technologische Umgebungen, wie Serverräume und Labors, oder für Anwendungen, die eine präzise Kontrolle der thermohygrometrischen Parameter und einen 24-Stunden-Dauerbetrieb verlangen. Das interne Design und die Wahl der Komponenten sorgen für die kompakte Gestaltung des Geräts, damit es so einfach wie möglich installiert werden kann.

Hohe Leistungsdichte

Die geringe Aufstellfläche und die hohe Leistung ermöglichen eine große Kälteleistungsdichte. Dadurch kann der Platz für die im Raum vorhandenen Geräte minimiert und die verfügbaren Raumverhältnisse bestens genutzt werden.

Doppelkreislauf

Die wassergekühlten Geräte sind auch mit Doppelkreislauf verfügbar. Diese Ausführung wird von zwei verschiedenen Hydraulikkreisen gespeist, die im Falle einer Betriebsstörung eines der beiden Kreisläufe eine maximale Kontinuität bieten. Jeder Kreislauf ist mit einem Regelventil ausgestattet.

- Temperaturkontrolle mit Heiz- und Nachheizsystemen anhand von Heizwiderständen, zusätzlichem Warmwasser-Register, oder beidem
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast (\DT konstant)
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Sofortlesefunktion von Wasserdurchfluss, Eintrittsund Austrittstemperatur des Wassers, oder der abgegebenen Kälteleistung

Erleichterte Normalwartung

Die gut durchdachte Konstruktion erlaubt den Zugriff zu den Bauteilen auf der Vorderseite des Geräts. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Lamellenregister mit hydrophiler Behandlung

Alle Modelle der Baureihe **JREF CW Zentrifugal** sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen und den Abfluss des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Zahlreiche Ventilarten sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe **JREF CW Zentrifugal** haben serienmäßig Regelventile mit Servomotor 0-10V, die in der 2-Wege-Ausführung, mit Anlage mit veränderlicher Leistung, oder in der 3-Wege-Ausführung oder mit Servomotor mit Federrückstellung wählbar sind. Auf Anfrage können außerdem druckunabhängige Ventile montiert werden. Alle diese Ventilarten garantieren höchst präzise Einstellungen und halten das hydronische Gleichgewicht der Anlage aufrecht.

JREF CW Zentrifugal		0800	0110	0140	0160	0200	0230
		Lufttemp. 35°C	rel. Feuchtigke	it 30% - Wasser	temp. In 15°C W	assertemp. Out	20°C Glykol 0%
Kälteleistung	[kW]	8,9	10,7	15,4	17,1	20,9	23,8
SHR		0,9	1	1	1	1	1
EER		44,5	35,7	25,7	28,5	29,9	34
		Lufttemp. 30°C	rel. Feuchtigke	it 35% - Wasser	temp. In 10°C W	assertemp. Out	15°C Glykol 0%
Kälteleistung	[kW]	8,8	10,7	15,3	17	20,7	23,7
SHR		0,9	1	1	1	1	1
EER		44	35,7	25,5	28,3	29,6	33,9
		Lufttemp. 24°	C rel. Feuchtigk	eit 50% - Wasse	rtemp. In 7°C Wa	assertemp. Out	12°C Glykol 0%
Kälteleistung	[kW]	6,9	10	12,8	14,5	18	20,8
SHR		0,9	0,9	0,9	0,9	0,9	0,9
EER		34,5	33,3	21,3	24,2	25,7	29,7
Nennluftleistung	m³/h	1785	2150	3530	3470	5115	4990
Leistungsaufnahme der Ventilatoren	[kW]	0,2	0,3	0,6	0,6	0,7	0,7
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	48	50	51	51	52	52
Abmessungen [BxHxT]	mm	600x18	75x449	900x18	75x449	1200x18	375x449
Abmessungen [BxHxT] Version Displacement	mm	600x21	25x449	900x21	25x449	1200x2	125x449
Stromversorgung	V/Ph/Hz			400/3	+N/50		

Die Präzisionsklimageräte der Baureihe **JREF DX Zentrifugal** sind Einheiten mit Direktverdampfung mit AC-Zentrifugalventilatoren, die für die Installation in kleinen technologischen Umgebungen wie Serverräume und Labors entwickelt wurden, oder für Anwendungen, die eine präzise Kontrolle der thermohygrometrischen Parameter und einen 24-Stunden-Dauerbetrieb verlangen. Das interne Design und die Wahl der Komponenten sorgen für die kompakte Gestaltung des Geräts, damit es so einfach wie möglich installiert werden kann.

JREF DX A

Die **JREF DX A Zentrifugal** sind die luftgekühlten Präzisionsklimaschränke der Baureihe JREF, die im Bereich der Klimatisierung von Rechenzentren umfangreich eingesetzt werden. Diese luftgekühlte Lösung ist durch das Fehlen anderer Hilfskreise und Pumpen nicht nur anlagenmäßig einfach konzipiert, sondern auch einfach zu verwalten, da der Kältekreis vom Klimaschrank gesteuert wird; außerdem können die interne Einheit und der externe Verflüssiger leicht installiert werden.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Vielseitige und flexible Baureihe

Das Sortiment JREF DX ist mit verschiedenen Kühl-Konfigurationen verfügbar.

Luftkühlung mit externem Verflüssiger.

Wasserkühlung mit Verdampfungsturm- oder Dry-Cooler-Wasser

Wasserkühlung mit Leitungswasser (15°C)

Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

- Kältemittel R410A. Auch mit R513A und R134a verfügbar
- Scroll-Verdichter
- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Elektronische Expansionsventile
- Bausatz große Entfernungen für einen optimalen Betrieb, falls das interne und das externe Gerät weit voneinander entfernt sind
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt

Sicherheit im Serverraum

Alle Modelle der Baureihe **JREF DX A Zentrifugal** sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Green

HiRef befasst sich ständig mit der Erforschung von Kältemitteln mit immer geringeren Umweltauswirkungen. Die Verwendung nicht toxischer und nicht brennbarer Kältemittel der Klasse ASHRAE A1 ist für die Close Control Anwendung wesentlich. Alle Geräte **JREF DX A Zentrifugal** sind mit den Kältemitteln R134a und R513A verfügbar.

Externe Verflüssiger

Alle Geräte können mit externen HiRef Verflüssigern kombiniert werden und es stehen verschiedene Kombinationen zur Wahl, die alle Anlagenbedürfnisse erfüllen.


Die externen Oversize-Verflüssiger eignen sich ideal für heißere Umgebungen, in denen die Verflüssigungstemperatur unter Kontrolle zu halten ist, während die Compact-Geräte geringe Abmessungen und Verbrauchswerte aufweisen. Die mit Doppelkreislauf-Einheiten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und Redundanz der Anlage zu sichern, oder mit doppeltem Kältekreis, um die Installationsräume und Kosten zu reduzieren.

-KONFIGURATION DES LUFTSTROMS-

JREF DX A Zentrilugai		UUUU	0000	0100	UIIU	0130	0100	0190	0205
				Lufttemperatu	ır 30°C rel. Feu	chtigkeit 35% /	Außenluft 35°C		
Kälteleistung	[kW]	7,2	9,4	12,4	13,7	16	18,3	21,9	24,4
SHR		1	1	1	1	1	1	1	1
EER		3,7	5,2	4,4	4,4	3,8	4,1	4,1	4,4
Leistungsaufnahme insgesamt	[kW]	2,2	2,1	3,4	3,7	4,8	5,2	6	6,2
				Lufttemperatu	ır 24°C rel. Feu	chtigkeit 50%	Außenluft 35°C		
Kälteleistung	[kW]	6,5	8,6	11,2	12,3	14,6	16,2	19,7	22,6
SHR		1	0,9	1	0,9	0,9	1	0,9	0,9
EER		3,5	4,8	4,1	4	3,5	3,7	3,8	4,1
Leistungsaufnahme insgesamt	[kW]	2,1	2,1	3,3	3,6	4,7	5	5,8	6,2

Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	46	48	48	49	51	52	53
Abmessungen [BxHxT]	mm	600x18	75x449		900x1875x449			1200x1875x449
Abmessungen Version Displacement [BXHXT]		600x21	25x449		900x2125x449			1200x2125x449
Stromversorgung	V/Ph/Hz				400 / 3	+N / 50		

Leistungsangaben bezogen auf die Downflow-Versionen. / Auch mit 60 Hz Versorgung verfügbar. / Höhe Displacement-Modelle 2125 mm.

Die Geräte **JREF W/Z Zentrifugal** sind wassergekühlte Präzisionsklimaschränke. Die **Baureihe W** nutzt Dry-Cooler-Wasser. Die **Baureihe Z** nutzt Leitungswasser oder Grundwasser mit niedriger Temperatur (15°C). Die JREF dieser Baureihen sind Monoblock-Geräte, in deren Innern sich der gesamte Kältekreis konzentriert. Die Verflüssigung erfolgt dank eines gelöteten Plattenwärmetauschers aus Edelstahl AISI 304.

Alle W-Einheiten können mit den HiRef Dry-Coolern kombiniert werden.

Upflow Downflow Displacement

- Kältemittel R410A. Auch mit R513A und R134a verfügbar
- Scroll-Verdichter
- Temperaturkontrolle mit Heiz- und Nachheizsystemen anhand von Heizwiderständen, Warmwasser und Heißgas
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt
- Umfangreiche Auswahl an Zubehören, darunter Basismodule, Plenumkammer für Kanäle, Plenumkammer für direktes Free Cooling

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5, F7
- Doppelte Stromversorgung mit automatischer Umschaltung
- Elektronische Expansionsventile

Effizienz

Die höchste Zuverlässigkeit und Leistungseffizienz der HiRef Geräte werden von der Wahl und Verwendung von Komponenten von bester Qualität garantiert, sowie von einem klug durchdachten internen und externen Layout.

Sicherheit im Serverraum Alle Modelle der Baureihe JREF

W/Z Zentrifugal sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

Gree

HiRef befasst sich ständig
mit der Erforschung von
Kältemitteln mit immer geringeren
Umweltauswirkungen. Die
Verwendung nicht toxischer und
nicht brennbarer Kältemittel der
Klasse ASHRAE A1 ist für die Close
Control Anwendung wesentlich. Alle
Geräte JREF W/Z Zentrifugal sind
mit den Kältemitteln R134a und
R513A verfügbar.

JREF DX W Zentrifugal		0060	0800	0100	0110	0130	0160	0190	0205
				Lufttemperati	ur 30°C rel. Feuc	htigkeit 35% W	asser 40-45°C		
Kälteleistung	[kW]	7,4	9	12,3	13,6	16,3	18,4	22	23,7
SHR		1	1	1	1	1	1	1	1
EER		4,3	4,4	4,3	4,3	4	4,4	4,3	4
Leistungsaufnahme insgesamt	[kW]	2	2,3	3,4	3,7	4,6	4,8	5,7	6,7
				Lufttemperati	ır 24°C rel. Feuc	htigkeit 50% W	asser 40-45°C		
Kälteleistung	[kW]	6,7	8,1	11	12,1	14,9	16,3	19,8	21,8
SHR		1	1	1	1	0,9	1	0,9	0,9
EER		3,9	3,9	3,8	3,8	3,7	3,9	3,9	3,6
Leistungsaufnahme insgesamt	[kW]	1,9	2,4	3,4	3,7	4,6	4,8	5,7	6,7
Nennluftleistung	m³/h	1785	2150	3530	3530	3470	5115	4990	4990
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	46	48	48	49	51	52	53	53
Abmessungen [BxHxT]	mm	600x18	75x449		900x1875x449			1200x1875x449	
Abmessungen Version Displacement [BxHxT]	mm	600x21	25x449		900x2125x449			1200x2125x449	
Stromversorgung	V/Ph/Hz				400 / 3	+N / 50			

JREF DX W Zentrifugai		0060	0080	0100	UIIU	0150	UIDU	0190	0205
				Lufttemperat	ur 30°C rel. Feu	:htigkeit 35% W	asser 15-30°C		
Kälteleistung	[kW]	8	10,1	13,5	15,5	18,3	21,4	25,5	27,7
SHR		1	1	1	1	1	1	1	1
EER		6,8	7,1	6,6	6,5	6,2	6,9	6,9	6,3
Leistungsaufnahme insgesamt	[kW]	1,4	1,7	2,6	2,9	3,5	3,7	4,4	5
				Lufttemperat	ur 24°C rel. Feu	htigkeit 50% W	asser 15-30°C		
Kälteleistung	[kW]	7,4	9,3	12,4	14	17,1	19,5	23,7	25,8
SHR		0,9	0,9	0,9	0,9	0,8	0,9	0,9	0,8
EER		6,3	6,5	6	5,8	5,8	6,3	6,4	5,9
Leistungsaufnahme insgesamt	[kW]	1,4	1,7	2,6	3	3,5	3,7	4,4	5
Nennluftleistung	m³/h	1785	2150	3530	3530	3470	5115	4990	4990
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	46	48	48	49	51	52	53	53
Abmessungen [BxHxT]	mm	600x18	75x449		900x1875x449			1200x1875x449	
Abmessungen Version Displacement [BxHxT]		600x2125x449			900x2125x449			1200x2125x449	
Stromversorgung	V/Ph/Hz				400 / 3	+N / 50			

Auch mit 60 Hz Versorgung verfügbar. / Leistungsangaben bezogen auf die Downflow-Versionen mit Kältemittel R410A. / Höhe Displacement-Modelle 2125 mm.

Die wassergekühlten Klimageräte der Baureihe FanWall HBCV sind für technologische Räume konzipiert, in denen bei gleichbleibender Kälteleistungsabgabe eine kleinere Aufstellfläche erforderlich ist. Durch eine aufmerksame CFD-Analyse der Strömungsdynamik wurden alle Konstruktionsdetails extrem sorgfältig entwickelt, um Druckverluste am Luftvolumenstrom und damit den Energieverbrauch der Ventilatoren auf ein Minimum zu reduzieren. Die große Oberfläche des Lamellen-Wärmetauschers minimiert außerdem die thermischen Ansätze zwischen eintretender Luft und austretendem Wasser, was zu einer maximalen Systemeffizienz führt.

EC-Lüftung 2.0

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC ermöglichen die Veränderung der Luftmenge je nach Wärmelast. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist

Größtmögliche Redundanz

Um die Kontinuität des Anlagenbetriebs zu garantieren, bietet das Sortiment **FanWall HBCV** die Möglichkeit eines komplett überströmten Kältekreises: Ein doppeltes Register und ein doppeltes Wasser-Regelventil erlauben die Kühlung des Serverraums auch wenn einer der zwei Kreisläufe defekt ist.

- Kondensatwanne aus Edelstahl
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast (ΔT konstant)
- Modulation der Geschwindigkeit der Ventilatoren je nach der verlangten Luftleistung (\Delta p konstant)
- Be- und Entfeuchtungsfunktion
- Nachheizungssysteme:
 - . mit Heizwiderständen
 - . mit Warmwasserregister

Auf Anfrage

- Doppelte Versorgung mit automatischer Umschaltung
- Sofortlesefunktion der abgegebenen Kälteleistung

Lamellenregister mit hydrophiler Behandlung

Alle Modelle der Baureihe

FanWall HBCV sind serienmäßig
mit Wärmetauscherregistern
mit hydrophiler Behandlung
ausgestattet. Die spezielle
Verkleidung und eine
angemessene Wahl der
Durchquerungsgeschwindigkeit
des Luftstromes begünstigen
das Aufnehmen und den
Abfluss des Kondenswassers im
Entfeuchtungsprozess, wodurch
das Nachziehen von Tropfen
inner- und außerhalb des Geräts
vermieden wird.

Beblasenes Lamellenregister

Bei der Projektentwicklung wurde beschlossen, das Lamellenregister nach den Ventilatoren zu positionieren, um eine gleichmäßigere Luftverteilung in die Racks zu garantieren und gleichzeitig die Luftströmungsturbolenzen zu minimieren.

Zahlreiche Ventilarten sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe **FanWall HBCV** haben serienmäßig
Regelventile mit Servomotor 0-10V,
die in der 2-Wege-Ausführung,
mit Anlage mit veränderlicher
Leistung, oder in der 3-WegeAusführung oder mit Servomotor
mit Federrückstellung wählbar
sind. Auf Anfrage können außerdem
druckunabhängige Ventile montiert
werden. Alle diese Ventilarten
garantieren höchst präzise
Einstellungen und halten das
hydronische Gleichgewicht der
Anlage aufrecht.

Einstellung der Ventilation

Je nach der Luftverteilungslogik im Serverraum kann auf dem Gerät das geeignetste Ventilationssystem gewählt und eine konstante Luftleistung (airflow control) oder eine konstant verfügbare Überlappung (Δp control) garantiert werden; diese letztgenannte eignet sich besonders bei Verwendung eines Doppelbodens.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um auch bei laufendem Betrieb den Zugriff zu den Komponenten von vorne (Lufeinlassseite) zu ermöglichen. Dies erleichtert die Normalwartungsarbeiten, unter voller Einhaltung der Sicherheitsanforderungen.

FanWall		051	121	171	102	242	342
			1 MODUL			2 MODULE	
Geometrie B		Einströn	nende Luft 30°0	- rel. Feuchtig	keit 35%; Was	sertemperatur	10 - 18°C
Gesamtkälteleistung	[kW]	48.5	118.2	173.4	97	236.4	346.8
SHR	-	1.0	1.0	1.0	1.0	1.0	1.0
EER des Kältekreislaufs	-	69.3	62.2	59.8	69.3	62.2	59.8
Geometrie B		Einströn	nende Luft 35°(- rel. Feuchtig	keit 25%; Was	sertemperatur	10 - 18°C
Gesamtkälteleistung	[kW]	63.7	157.1	230.3	127.4	314.2	460.6
SHR	-	1.0	1.0	1.0	1.0	1.0	1.0
EER des Kältekreislaufs	-	91.0	82.7	79.4	91.0	82.7	79.4
Geometrie C		Einström	ende Luft 30°C	- rel. Feuchtig	keit 35%; Was	sertemperatur	10 - 22°C
Geometrie C Gesamtkälteleistung	[kW]	Einström 44.9	tende Luft 30°C 110.2	- rel. Feuchtig 164.4	keit 35%; Was: 89.8	sertemperatur 220.4	10 - 22°C 328.8
	[kW]			_			
Gesamtkälteleistung	[kW] - -	44.9	110.2	164.4	89.8	220.4	328.8
Gesamtkälteleistung SHR	[kW] - -	44.9 1.0 64.1	110.2 1.0 58.0	164.4 1.0	89.8 1.0 64.1	220.4 1.0 58.0	328.8 1.0 56.7
Gesamtkälteleistung SHR EER des Kältekreislaufs	[kW] - - [kW]	44.9 1.0 64.1	110.2 1.0 58.0	164.4 1.0 56.7	89.8 1.0 64.1	220.4 1.0 58.0	328.8 1.0 56.7
Gesamtkälteleistung SHR EER des Kältekreislaufs Geometrie C	-	44.9 1.0 64.1 Einström	110.2 1.0 58.0 nende Luft 35°C	164.4 1.0 56.7 - rel. Feuchtig	89.8 1.0 64.1 keit 25%; Was s	220.4 1.0 58.0 sertemperatur	328.8 1.0 56.7 10 - 22°C
Gesamtkälteleistung SHR EER des Kältekreislaufs Geometrie C Gesamtkälteleistung	-	44.9 1.0 64.1 Einström 60.6	110.2 1.0 58.0 nende Luft 35°C 148.9	164.4 1.0 56.7 - rel. Feuchtig 219.8	89.8 1.0 64.1 keit 25%; Was:	220.4 1.0 58.0 sertemperatur 297.8	328.8 1.0 56.7 10 - 22°C 439.6
Gesamtkälteleistung SHR EER des Kältekreislaufs Geometrie C Gesamtkälteleistung SHR	-	44.9 1.0 64.1 Einström 60.6	110.2 1.0 58.0 sende Luft 35°C 148.9 1.0	164.4 1.0 56.7 - rel. Feuchtig 219.8 1.0	89.8 1.0 64.1 keit 25%; Wass 121.2	220.4 1.0 58.0 sertemperatur 297.8 1.0	328.8 1.0 56.7 10 - 22°C 439.6 1.0
Gesamtkälteleistung SHR EER des Kältekreislaufs Geometrie C Gesamtkälteleistung SHR EER des Kältekreislaufs	- - [kW] - -	44.9 1.0 64.1 Einström 60.6 1.0 86.6	110.2 1.0 58.0 148.9 1.0 78.4	164.4 1.0 56.7 - rel. Feuchtig 219.8 1.0 75.8	89.8 1.0 64.1 keit 25%; Was: 121.2 1.0 86.6	220.4 1.0 58.0 sertemperatur 297.8 1.0 78.4	328.8 1.0 56.7 10 - 22°C 439.6 1.0 75.8

^{*} Die Maßangaben beziehen sich auf Standard-Modelle, können jedoch je nach Anwendungsbereich personalisierbar sein. Leistungsangaben bezogen auf die wassergekühlten Versionen. Auch mit 60 Hz Versorgung verfügbar.

47

Die**HTI CW** sind Split-Klimageräte für die Klimatisierung kleiner und mittelgroßer EDV-Räume. Sie sind für die Decken- oder Wandinstallation konzipiert und für die Klimatisierung von Zentralen mit kleinem oder vollständig den technologischen Einrichtungen gewidmetem Innenraum geeignet. Dank der rationellen Anordnung der Komponenten und des umfangreich verfügbaren Zubehörsortiments sind die Geräte leicht installierbar und für die verschiedenen Shelter-Konfigurationen geeignet.

Lamellen-Wärmetauscher mit hydrophiler Behandlung

Alle Modelle der Baureihe **HTI CW** sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

EC-Ventilation

Die auf der gesamten Baureihe serienmäßig vorhandenen EC-Ventilatoren ermöglichen die Veränderung der Luftmenge je nach Wärmelast. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

- Temperaturkontrolle mit Heizund Nachheizsystemen anhand von Heizwiderständen
- Feuchtigkeitskontrolle mittels Ent- und Befeuchtung mit externem Befeuchter
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast (\Darkonstant)
- Version mit doppelter Stromversorgung für Notfälle verfügbar: Netzspannung 230/400 V und Notspannung 24/48 VDC
- Gehäuse serienmäßig mit Epoxydpulverlackierung

Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4
- Sofortlesefunktion der Eintrittsund Austrittstemperaturen des Wassers

Maximale Redundanz

Im Falle einer DUAL-Versorgung (Netzversorgung + unterbrechungsfreie Gleichstromversorgung) garantiert die Free Cooling Betriebsmethode (Option) die korrekten rauminternen Wärmebedingungen, auch im Falle eines Stromausfalls. Dadurch bleibt die Betriebskontinuität des Systems garantiert.

Einfache und schnelle Installation

Maximale Energieeinsparung mit direktem Free Cooling

Die Geräte können auf Anfrage mit direktem Free Cooling Modul ausgestattet

Geräts installiert werden kann, reduziert die Arbeit der Kaltwassererzeuger-Einheiten für die Erzeugung der Kaltwasserversorgung (teilweises Free Cooling) und erlaubt unter vollen Free Cooling Bedingungen seine Ausschaltung, mit bedeutenden Auswirkungen auf die Reduzierung des PUE-Wertes (Power Usage

werden. Dieses System, das auch im Innern eines bereits in Betrieb genommener

Die Geräte können je nach Bedarf an Decke oder Wand installiert werden. Dank der Verwendung von EC Plug Fan Ventilatoren garantieren die Klimageräte der Baureihe HTI CW eine optimale Luftverteilung, Effizienz, Energieeinsparung, Zuverlässigkeit und eine kompakte Bauweise, unabhängig von der gewählten Konfiguration.

Erleichterte Normalwartung

Das Gerät wurde mit großer Sorgfalt entwickelt, um den Zugriff zu den Komponenten von vorne zu ermöglichen. Dieser Aspekt ist, zusammen mit der kompletten Entnehmbarkeit der Filter und der eventuellen Free Cooling Jalousie, für die Normalwartungsarbeiten besonders vorteilhaft.

Zahlreiche Ventilarten sichern eine immer sorgfältige Einstellung

Alle Geräte der Baureihe **HTI CW** haben serienmäßig Regelventile mit Servomotor 0-10V, die in der 2-Wege-Ausführung, mit Anlage mit veränderlicher Leistung, oder in der 3-Wege-Ausführung wählbar sind. Auf Anfrage können außerdem Servomotor mit Federrückstellung und druckunabhängige Ventile montiert werden. Alle diese Ventilarten garantieren höchst präzise Einstellungen und halten das hydronische Gleichgewicht der Anlage aufrecht.

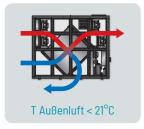
Effectiveness) des Systems.

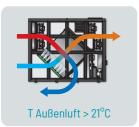
HTI CW		073	105	120	145	310	380
		Lufttemp	eratur 35°C rel.Feucl	htigkeit 30% / Wasse	ertemp. In 15°C / Was	sertemp. Out 20°C /	Glykol 0%
Kälteleistung	[kW]	7,9	8,4	11,3	12,4	35,6	41,8
SHR		1	1	1	1	1	1
EER		46,2	42,2	45,2	41,4	30,7	33,7
		Lufttemp	eratur 30°C rel.Feuc	htigkeit 35% / Wasse	ertemp. In 10°C / Was	sertemp. Out 15°C / (Glykol 0%
Kälteleistung	[kW]	7,9	8,5	11,5	12,5	36,3	41,8
SHR		0,9	0,9	1	0,9	1	0,9
EER		46,6	42,6	46,0	41,8	31,3	33,7
		Lufttemp	eratur 27°C rel.Feuc	htigkeit 40% / Wass	ertemp. In 7°C / Was	sertemp. Out 12°C / (lykol 0%
(älteleistung	[kW]	8,9	10,1	13,1	14,6	38,4	45,4
SHR		0,8	0,8	0,8	0,8	0,9	0,9
EER		52,3	50,3	52,6	48,6	33,1	36,6
Nennluftleistung	m³/h	1300	1300	1950	1950	7000	7000
Leistungsaufnahme der Ventilatoren	[kW]	0,2	0,2	0,3	0,3	1,2	1,2
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	53	55	54	56	66	66
Abmessungen [BxHxT]	mm	1050x3	58x936	1150x40	08x1026	1500x6	85x1096
Stromversorgung	V/Ph/Hz		230 /	1/50		400 / 3	+N / 50

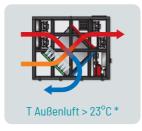
Auch mit 60 Hz Versorgung verfügbar. Nur für die Deckenmontage für die Größen 0310-0381.

CHiRef

HPAHU


Durch die Kombination aus Verdampfungskühlsystem und Luft/Luft-Wärmetauscher mit sich kreuzenden Luftströmen der Baureihe **HDB - DataBatic** erhöht sich die Stundenzahl für das indirekte Free Cooling pro Jahr und für mehr Klimazonen.


Die Reduzierung (und in einigen Fällen das völlige Ausschalten) des mechanischen Betriebs bringt einen doppelten Vorteil: auf der einen Seite eine Senkung der Kosten für das Management der Anlage durch eine höhere Jahresenergieeffizienz (geringere PUE) und auf der anderen eine Senkung der Implementierungskosten dank der niedrigeren installierten elektrischen Leistungen.


Die HDB-Geräte können die Option "Kältekreis" aufnehmen und werden werksseitig komplett als Monoblock zusammengestellt, um die Installationsarbeiten zu erleichtern.

Ergänzung mit direkter Verdampfung oder mit Kaltwasser

Wenn die klimatischen Außenbedingungen es nicht zulassen, dass die interne Last ausschließlich durch indirektes Free Cooling + Verdunstungskühlung gedeckt wird, schaltet das mechanische Kühlsystem ein. Dazu ist als Option der Kältekreis mit modulierenden BLDC-Verdichtern mit R410A, elektronisch gesteuertem Expansionsventil und Verdampfer mit hydrophiler Lamellen-Beschichtung erhältlich. Alternativ kann ein Kaltwasser-Wärmetauscher installiert und an einen außen aufgestellten Kaltwassererzeuger angeschlossen werden.

* Feuchtkugelbedingungen für ein Rechenzentrum mit 1 MW (Redundanz N+1) in Amsterdam @ 36°C – 25 %, T Austrittsluft 24°C, Max T Austrittsluft 26°C

- Management von mehreren Geräten in Parallelschaltung innerhalb einer Anlage möglich.
- Hocheffizienter Wärmetauscher mit sich kreuzenden Luftströmen mit Epoxidbeschichtung zum Korrosionsschutz (Eurovent-Zertifizierung).
- Überdruck-Management in der Luftverteilerkammer (Δp Control)
- Seitlicher und vorderer Zugriff auf alle Komponenten, auch bei laufendem Betrieb, um die Wartung zu erleichtern und Anlagenstillstände zu vermeiden.
- Verkleidung gemäß Norm UNI 1886 entwickelt und montiert.

Auf Anfrage

- Bausatz Frischluft mit modulierenden Schiebern (Fresh Air Kit).
- · Ultraschallbefeuchter.
- Bausatz für Anwendungen bei niedrigen Außenlufttemperaturen (bis -40°C).

Plug Fan Ventilatoren mit EC-Motor

Die EC-Belüftung für beide Luftströme bietet:

- höhere Effizienz auch im Teillastbetrieb;
- Reduzierung der Schallemissionen:
- präzise Verfolgung der Schwankungen der Wärmelast.

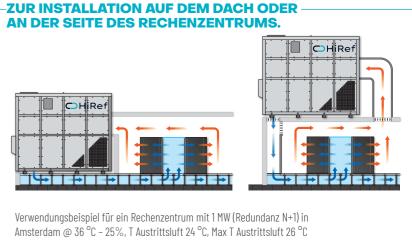
Der Verbrauch der Ventilatoren in der Konfiguration "bei laufendem Betrieb austauschbar" (Hot Swappable Fans) werden in Echtzeit auf dem Display des Geräts angezeigt.

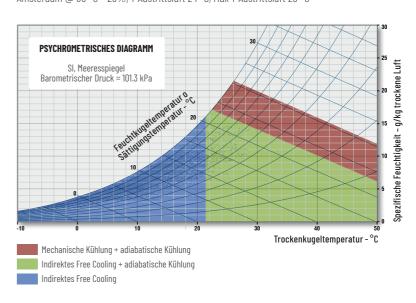
Verdampfungskühlung auf der einströmenden Außenluft

Die Geräte **HDB - DataBatic** funktionieren mit der Verdampfungskühlungstechnik. Dabei wird über Düsen Wasser auf die von außen einströmende Luft gesprüht. Das Wasser kühlt beim Verdunsten durch die adiabatische Wirkung die Luft, die danach den Wärmetauscher mit sich kreuzenden Luftströmen bei einer Temperatur in der Nähe der Feuchtkugeltemperatur durchströmt, wodurch sich die Nutzungszeit für das Free-Cooling erhöht. Es handelt sich um ein mehrstufiges System im Hinblick auf den Luftstrom zur Optimierung der Sättigungseffizienz.

Cooling mit großem C

Im Gegensatz zum direkten Free-Cooling bietet das indirekte Free-Cooling folgende Vorteile:


- Es erzeugt keine Kontamination zwischen der Innenluft des Rechenzentrums und der Außenluft:
- es blockiert das Eindringen von Staub und Schadstoffen in die Räume ohne zusätzliche Filter:
- die latente Last wird nicht größer.


Dadurch reduziert sich ganz offensichtlich der Energieverbrauch für das Management der Anlage.

Wassersparfunktion und legionellenfreies System

Die elektronisch modulierende Pumpeneinstellungslogik ermöglicht eine optimale Luftsättigung und schränkt zugleich den WUE-Wert (Water Usage Effectiveness) und die Energieverbrauchswerte ein. Die besondere Konfiguration des Hydraulikkreislaufs und die für seine Verwaltung konzipierten Algorithmen garantieren einerseits das notwendige Nachfüllen von Wasser ins System zur Vermeidung hoher Salzkonzentrationen im Wasser und verhindern andererseits, dass sich das Wasser im Sammelbecken anstaut, mit dem damit verbundenen Risiko der Legionellenvermehrung.

WUE = Jährlicher Wasserverbrauch
Gesamtleistung IT-Geräte [1/kWh]

HDB		HDB0060	HDB100	HDB0200	HDB0300
Frame	-	FI	F2	F3	F4
Abmessungen [BxHxT]	mm	2750 x 2650 x 1180	4200 X 2650 X 2250	4700 x 3600 x 2250	4700 x 3600 x 3100
Kälteleistung	[kW]	10 - 60	60 - 100	100 - 200	200 - 330
Luftleistung	m³/h	bis 15.000	bis 27.000	bis 53.000	bis 82.500

Auch mit 60 Hz Versorgung verfügbar.

Die Leistungsangaben beziehen sich auf die Betriebsmethode des Kreislaufs mit Ergänzung durch Kaltwasser oder Direktverdampfung. Die Abmessungen beziehen sich auf das Basisgerät ohne Zubehör in der Ausführung Free Cooling und Ergänzung.

CHiRef

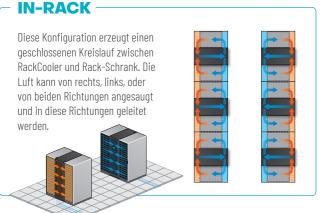
HIGH DENSITY COOLING

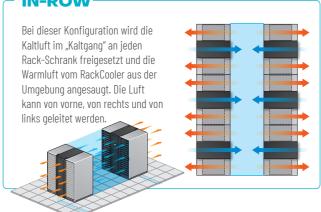
Die RackCooler der Baureihe NRC sind die ideale Lösung für die Kühlung von Rack-Schränken in kleinen und mittelgroßen Rechenzentren, in denen rund um die Uhr eine präzise Kontrolle der Raumtemperatur und Feuchtigkeit gefordert ist. Sie sind besonders für kleine Installationen geeignet, bei denen man nicht über einen Chiller verfügt oder wo das Vorhandensein von Wasser im Rechenzentrum nicht zugelassen ist. Das interne Design und die Wahl der Komponenten zielen ausschließlich darauf ab, eine hohe Energieeffizienz zu erreichen, um die Verwaltungskosten des gesamten Systems zu reduzieren. Die Geräte NRCD haben einen externen Verflüssiger, der Effizienz und Zuverlässigkeit garantiert. Die Geräte NRCV haben dagegen eine Kompressor-Kondensator-Einheit mit externem Verdichter, für eine kompakte und geräuscharme Lösung.

-LUFTGEKÜHLT MIT KOMPRESSOR-KONDENSATOR-EINHEIT

-LUFTGEKÜHLT

In-Rack- oder In-Row-Konfiguration

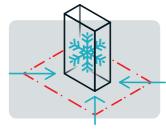

Je nach Art der Kühlung der Rack-Schränke, die durch Gestaltung von Warm- und Kaltgängen im Rechenzentrum oder durch die Einhausung und lokalisierte Kühlung erzielt werden kann, bietet die Baureihe **NRC** zwei verschiedene Konfigurationen:


- Kältemittel R410A
 - EC-Ventilatoren
 - Twin Rotary Verdichter und Scroll-Inverter
 - Elektronische Expansionsventile
 - Fortschrittliche Mikroprozessor-Überwachung, mit LCD-Display programmierbar
 - Feuchtigkeitskontrolle mittels Entfeuchtung

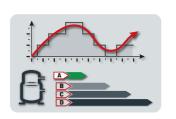
Auf Anfrage

- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (Δp control)
- Bausatz niedrige Temperaturen für einen optimalen Betrieb, falls die Installation in besonders kalten Umgebungen erfolgt

IN-ROW


Im warmen Zustand auswechselbare Ventilatoren

Um die Ausschaltungen des Gerätes so weit wie möglich einzuschränken, kann die Auswechslung eines defekten Ventilators ohne Ausschaltung erfolgen, dank der Verwendung des Schutzkorbes und der Verbinder für den Versorgungsund Steuerungsteil. Die Auswechslung der Ventilatoren verwandelt sich daher in einen Normalwartungsvorgang.


Sicherheit im Serverraum Alle Modelle der Baureihe NRCD/

NRCV sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

Hohe Leistungsdichte

Durch das interne Design und die besondere Anordnung der Komponenten ist ein Verdampfungsregister mit einer großen Wärmeaustauschfläche verfügbar. Die Aufstellfläche des Geräts bleibt dennoch beschränkt und der im Serverraum eingenommene Platz wird maximal genutzt.

Modulation der Leistung

Die Geräte passen sich schnell dem Kältebedarf des Rechenzentrums an. Dank des invertergesteuerten Verdichters ist die Leistung bis 25% der Nennleistung modulierbar, was gleichzeitig den Verbrauch reduziert. Dies sichert auch bei reduzierten Lasten einen Dauerbetrieb des Geräts, ohne dass Ein- und Ausschaltungszyklen erfolgen.

EC-Ventilation

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT . Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindiakeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notaeschwindiakeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen

Verschiebbarer Schaltkasten

Bei den Baugrößen mit 300 mm breiter Konstruktion ist der Schaltkasten so entwickelt, dass er den kleinst möglichen Platz einnimmt und nicht mit der Luftverteilung in der gesamten Nutzhöhe des Geräts interferiert. Um dies zu erzielen, ohne die Zugänglichkeit während der Erstinbetriebnahmeund Sonderwartungsvorgänge zu versperren, wurde eine gleitende Schubfachversion gestaltet. Außerdem beugt die Konfiguration den Kabelverwicklungen vor.

57

Externe Ein NRCD Interne Einheit NRCD	nheit H	Inter NR	NRO I Jesus Higher	B O
RCD	0100	0200	0300	0260

NRCD		0100	0200	0300	0260	0400	0450
		Lufttemperatur 35°C rel. Feuchtigkeit 30% Außenluft 35°C					
Kälteleistung	[kW]	13,1	23,6	31,6	28,6	45,5	50,1
SHR		1	0,9	0,9	1	1	1
EER		4	3,1	2,7	3,8	3,8	3,3
Leistungsaufnahme insgesamt	[kW]	3,5	8,4	12,7	8,2	13,4	16,6
		Lufttemperatur 30°C rel. Feuchtigkeit 35% Außenluft 35°C					
Kälteleistung	[kW]	12,4	21,8	29,4	26,1	41,3	46,2
SHR		1	0,9	0,8	1	1	1
EER		3,9	2,9	2,5	3,5	3,6	3,2
Leistungsaufnahme insgesamt	[kW]	3,4	8,2	12,4	8,1	13,1	16,1
Nennluftleistung	m³/h	2700	4000	4250	5000	9000	9000
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	64	66	67	60	73	73
Abmessungen [BxHxT]	mm	300x2000x1200 600x2000x1200					
Stromversorgung	V/Ph/Hz	230/1/50 400/3+N/50					

NRCV		U1 4 U	U24U	U33U
		Lufttemperatur 3	35°C rel. Feuchtigkeit 30°	% Außenluft 35°C
Kälteleistung	[kW]	15,2	28,2	37,4
SHR		1	1	0,8
EER		5,2	4	3,9
Leistungsaufnahme insgesamt	[kW]	3,7	8,4	12,3
		Lufttemperatur 3	30°C rel. Feuchtigkeit 359	% Außenluft 35°C
Kälteleistung	[kW]	13,3	24,6	34,6
SHR		1	1	0,9
EER		4,1	3,2	3,1
Leistungsaufnahme insgesamt	[kW]	4	9,1	13,2
Nennluftleistung	m³/h	3100	5300	5300
Nennluftleistung externe Einheit	m³/h	6400	9300	16300
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	62	63	63
Lp @ Nominal rpm; Dist.= 10 m Q=2 externe Einheit	dB(A)	46	46	46
Abmessungen [BxHxT]	mm		300x2000x1200	
Abmessungen externe Einheit [BxHxT]	mm	1250x460x882	1565x605x1275	1965x950x1322
Stromversorgung	V/Ph/Hz		230/1/50	
Stromversorgung externe Einheit	V/Ph/Hz	230/1/50	400/3	+N/50

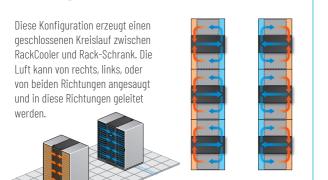
Auch mit 60 Hz Versorgung verfügbar.

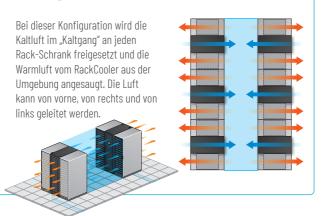
Die Leistungsdaten beziehen sich auf die mit externen Verflüssigern HiRef Standard (NRCD) kombinierten Geräte. Gesamtleistungsaufnahme bezogen auf interne Einheit und Kompressor-Kondensator-Einheit (NRCV).

Die **HRCC** sind wassergekühlte RackCooler. Sie sind die ideale Lösung für die Kühlung von Rack-Schränken in Rechenzentren, in denen rund um die Uhr eine präzise Kontrolle der Raumtemperatur und Feuchtigkeit gefordert ist. Sie eignen sich ganz besonders für den Einbau in wassergekühlten Systemen mit Free-Cooling-Chillern, da diese Klimageräte auch mit höheren Wassertemperaturen als die konventionellen 7/12°C oder 10/15°C arbeiten können. Das interne Design und die gewählten Komponenten streben ausschließlich das Ziel an, hohe Energieleistungsniveaus zu erreichen und einen unterbrechungsfreien Betrieb zu garantieren, denn diese letztgenannte Eigenschaft ist für diese Art von Anwendung mit hoher/sehr hoher Leistungsdichte von grundlegender Bedeutung.

- Fortschrittliche Mikroprozessor-Überwachung, mit LCD-Display programmierbar Feuchtigkeitskontrolle mittels Entfeuchtung
- Modulation der Geschwindigkeit der Ventilatoren je nach Wärmelast (ΔT konstant)

Auf Anfrage


- Luftfilter Klasse G3 standardmäßig. Luftfilter G4, M5
- Doppelte Stromversorgung mit automatischer Umschaltung
- Modulation der Ventilation mit konstanter Leistung (airflow control) oder mit konstant verfügbarem Überdruck (Δp control)
- Sofortlesefunktion von Wasserdurchfluss, Eintritts- und Austrittstemperatur des Wassers, oder der abgegebenen Kälteleistung

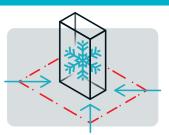

In-Rack- oder In-Row-Konfiguration

IN-RACK

Je nach Art der Kühlung der Rack-Schränke, die durch Gestaltung von Warm- und Kaltgängen im Rechenzentrum oder durch die Einhausung und lokalisierte Kühlung erzielt werden kann, bietet die Baureihe **HRCC** zwei verschiedene Konfigurationen:

IN-ROW

Die auf der gesamten Baureihe serienmäßig vorhandenen Ventilatoren PLUG EC sind mit unterschiedlichen Logiken einstellbar: Leistung, konstante Werte ΔP Überdruck und ΔT . Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

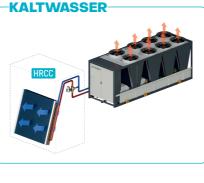

Im warmen Zustand auswechselbare Ventilatoren

Um die Ausschaltungen des Gerätes so weit wie möglich einzuschränken, kann die Auswechslung eines defekten Ventilators ohne Ausschaltung erfolgen, dank der Verwendung des Schutzkorbes und der Verbinder für den Versorgungsund Steuerungsteil. Die Auswechslung der Ventilatoren verwandelt sich daher in einen Normalwartungsvorgang.

Sicherheit im Serverraum Alle Modelle der Baureihe

sind serienmäßig mit Wärmetauscherregistern mit hydrophiler Behandlung ausgestattet. Die spezielle Verkleidung und eine angemessene Wahl der Durchquerungsgeschwindigkeit des Luftstromes begünstigen das Aufnehmen des Kondenswassers im Entfeuchtungsprozess, wodurch das Nachziehen von Tropfen inner- und außerhalb des Geräts vermieden wird.

KATALOG CCAC - HPDCU - HDC


Hohe Leistungsdichte

Durch das interne Design und die besondere Anordnung der Komponenten sind ein oder zwei Lamellen-Wärmetauscher mit einer erheblichen Wärmeaustauschfläche verfügbar. Die Aufstellfläche des Geräts bleibt dennoch beschränkt und der im Serverraum eingenommene Platz wird maximal genutzt.

Verschiebbarer **Schaltkasten**

Bei den Geräten mit 300mm breiter Konstruktion ist der Schaltkasten so entwickelt, dass er den kleinst möglichen Platz einnimmt und nicht mit der Luftverteilung in der gesamten Nutzhöhe des Geräts interferiert. Um dies zu erzielen, ohne die Zugänglichkeit während der Erstinbetriebnahme- und Sonderwartungsvorgänge zu versperren, wurde eine gleitende Schubfachversion gestaltet. Außerdem beugt die Konfiguration den Kabelverwicklungen vor.

HRCC		0200	0250	0450	0510		
		Lufttemp. 35°C rel. Feuchtigkeit 30% / - Wassertemp. In 15°C Wassertemp. Out 20°C Glykol 0%					
Kälteleistung	[kW]	20,2	27,8	46,4	57,2		
SHR		1,0	1,0	1,0	1,0		
EER		43,9	38,6	31,1	37,4		
		Lufttemp. 30°C rel. Feuchtigkeit 35% / - Wassertemp. In 10°C Wassertemp. Out 15°C Glykol 0%					
Kälteleistung	[kW]	20,1	27,7	46,2	57,0		
SHR		1,0	1,0	1,0	1,0		
EER		43,7	38,5	31,0	37,3		
Nennluftleistung	m³/h	4000	5300	9000	11000		
Leistungsaufnahme der Ventilatoren	[kW]	0,5	0,7	1,5	1,5		
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	62	65	70	67		
Abmessungen [BxHxT]	mm	300x20	00x1200	600x2000x1200			
Stromversorgung	V/Ph/Hz	230/	71/50	400/3+N/50			

Auch mit 60 Hz Versorgung verfügbar

Die Geräte der Baureihe MRAC sind die ideale Lösung für die Klimatisierung von 19-Zoll-Rack-Schränken, für die eine präzise Kontrolle der Innentemperatur und ein Betrieb rund um die Uhr erforderlich sind. In gesplitteter Ausführung mit externer Kompressor-Kondensator-Einheit und Kältemittel R410A erweitert sich der Leistungsbereich von 3.6 bis 7.9 kW. In der wassergekühlten **Version CW**werden 4.5 kW erreicht. MRAC wird über eine dedizierte Software gesteuert, die bei HiRef betriebsintern entwickelt wurde und den Anschluss von bis zu 8 Geräten über LAN und die Schnittstellenverbindung mit einem System zur automatischen Türöffnung im Alarmfall ermöglicht.

- Kältemittel R410A
- Hocheffizientes Register mit hydrophilen Lamellen und Aluminiumstruktur
- · Version für niedrige Außenlufttemperaturen verfügbar
- · Verdichter mit Brushless-Inverter-Technologie für die Version mit 7 kW verfügbar
- Kondensatwanne aus Edelstahl AISI 430
- · Schnellanschlüsse für Elektrik und Kontrolle
- Vollisolierte Paneele
- Luftfilter Typ G3

Kompakte Bauform

MRAC ist so konzipiert, dass das Gerät im Innern des Rack-Schranks versteckt werden kann und den kleinstmöglichen Platz im Rack-Schrank einnimmt. In jederlei Rack-Schrank mit 19"-Ständern belegt MRAC nur 7 Höheneinheiten und nimmt daher ganz wenig Raum im Rechenzentrum ein.

Maximale Redundanz von MRAC in der Version mit zwei externen Kompressor-Kondensator-Einheiten

Auf Anfrage ist **MRAC** mit doppelter externer Kompressor-Kondensator-Einheit verfügbar. Diese Lösung bietet Redundanz und sichert den Dauerbetrieb, auch wenn eine der zwei Einheiten defekt wird.

EC-Ventilation

Die auf der gesamten Baureihe serienmäßig vorhandenen EC-Ventilatoren ermöglichen die Veränderung der Luftmenge je nach Wärmelast. Ihre punktgenaue Einstellung erlaubt eine effiziente Verwendung der zur Lüftung eingesetzten elektrischen Energie, sowie eine dementsprechende Reduzierung des PUE-Wertes des Systems. Die Einstellung der Geschwindigkeit mit erweiterter Wertspanne erfolgt über das Modbus-Protokoll. Außerdem kann der Ventilator mit der Funktion "Notgeschwindigkeit" auch dann funktionieren, wenn der Mikroprozessor Betriebsstörungen aufweist.

MRAC DX		035	035B	070	070 (Inverter)
		Lufttempe	ratur 35°C rel.Feuc	htigkeit 30% Auß	enluft 35°C
Kälteleistung	[kW]	4	3,6	4,7	9,4
SHR		1	1	1,1	0,9
EER		3,7	3,3	4,1	2,7
Leistungsaufnahme insgesamt	[kW]	1,3	1,4	1,5	4,1
		Lufttempe	ratur 30°C rel.Feuc	:htigkeit 35% Auß	enluft 35°C
Kälteleistung	[kW]	3,7	3,2	4	8,8
SHR		1	1	1	0,8
EER		3,6	3,2	3,9	2,6
Leistungsaufnahme insgesamt	[kW]	1,2	1,4	1,4	4
Nennluftleistung	m³/h	915	1330	1330	1330
Nennluftleistung externe Einheit	m³/h	1600	1600	1600	5100
Lp @ Nominal rpm; dist.= 2 m Q=2	dB(A)	62	66	66	66
Lp @ Nominal rpm; Dist.= 10 m Q=2 externe Einheit	dB(A)	46	46	46	46
Abmessungen [BxHxT]	mm	300x2000x1200			
Abmessungen externe Einheit [BxHxT]	mm	776x540x320 1305x648x495			
Stromversorgung	V/Ph/Hz	230/1/50			
Stromversorgung externe Einheit	V/Ph/Hz	230/1/50			

MRAC CW		035	070				
	Lufttemp. 35°C rel. Feuchtigkeit 30% / - Wassertemp. In 15°C Wassertemp. Out 20°C Glykol 0%						
Kälteleistung	[kW]	3,5	4,5				
SHR		1,0	1,0				
EER		17,5	22,5				
	Lufttemp. 30°C rel. Feuchtigkeit 35% / - Wassertemp. In 10°C Wassertemp. Out 15°C Glykol 0%						
		•					
Kälteleistung	[kW]	3,4	4,5				
SHR		1,0	1,0				
EER		17,0	22,5				
Nennluftleistung	m³/h	915	915				
Leistungsaufnahme der Ventilatoren	[kW]	0,2	0,2				
Lp @ Nominal rpm; dist.= 2 m Q=2	dB (A)	61	61				
Abmessungen [BxHxT]	mm	485x300x600					
Stromversorgung	V/Ph/Hz	230/1/50					

Leistungsangaben für die Größe O35B bezogen auf den Betrieb mit nur einer Kompressor-Kondensator-Einheit (MRAC DX). Gesamtleistungsaufnahme bezogen auf interne Einheit und Kompressor-Kondensator-Einheit (MRAC DX).

EXTERNE VER-FLÜSSIGER

Die **externen Verflüssiger HiRef** sind externe Geräte, die mit den luftgekühlten internen Geräten wie die Schränke der Baureihen A – D und die RackCooler NRCD kombiniert werden können. HiRef bietet ein umfangreiches Verflüssiger-Sortiment für den Betrieb mit den Kältemitteln R410A, R134a, R454B, R407C. Die mit Doppelkreislauf-Geräten kombinierten Verflüssiger sind mit einzelnem Kältekreis verfügbar, um die höchste Zuverlässigkeit und Redundanz der Anlage

zu sichern, oder mit doppeltem Kältekreis, um die Installationsräume und Kosten zu reduzieren. Der Rahmen dieser Modelle ist aus Alulegierung und verzinktem Blech gefertigt: Eine ideale Lösung, die eine hohe Korrosionsbeständigkeit, den Schutz der Kupferrohre und Solidität garantiert. Die Außenwände aus verzinktem Blech mit Polyesterlack sind gegen Korrosion und UV-Strahlen beständig.

- Stromversorgung 230 V einphasig, oder 400 V dreiphasig
- Stromversorgung von interner HiRef Einheit (serienmäßig) oder freistehend (auf Anfrage)

Geräuscharm

Die externen Verflüssiger sind auch in Low-Noise-Versionen mit geringen Schallemissionen verfügbar; ideal für Zonen, wo einen hoher akustischer Komfort bewahrt werden muss.

Personalisierung

Die Geräte sind auf Anfrage personalisierbar, um die Projektbedürfnisse der Kunden zu erfüllen. Die folgenden Optionen stehen zur Wahl:

- Spezielle Behandlungen des Lamellen-Wärmetauschers, darunter die Epoxidbeschichtung für eine gute Beständigkeit gegen korrosionsfördernde Umgebungen, oder Kupferlamellen für Installationen in der Meeresumwelt:
- erhöhter Lamellenabstand für eine geringere Verschmutzung und eine einfachere Reinigung in sandigen Umgebungen;
- spezielle kanalisierbare Verflüssiger für Installationen in geschlossenen Räumen.

Vielseitigkeit

Lamellenpaket

Die Lamellen-Wärmetauscher

sind aus Kupferrohren und mit je nach Modell gewellten oder

gerippten Aluminiumlamellen gefertigt. Der Standard-Abstand zwischen den Lamellen beträgt je nach Modell 1,8 - 2 - 2,1 mm

und ermöglicht eine hohe Wärmeaustauscheffizienz, ohne

zu beeinträchtigen.

eine einfache Normalreinigung

Alternativ zur serienmäßigen vertikalen Installation mit horizontalem Luftstrom kann die horizontale Installation mit Luftstrom nach oben gewählt werden, die mit einem getrennt bestellbaren Beine-Set gestaltet wird.

Effizienz

Je nach Modell sind auf den Geräten Axialventilatoren im

Durchmasser von 750 (450, 500, 670 mm montiert

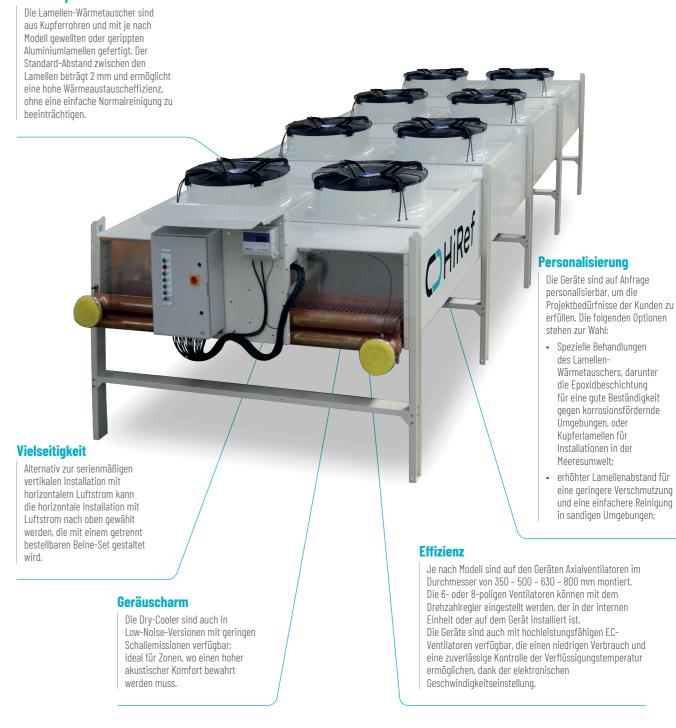
Durchmesser von 350 – 450 – 500 – 630 mm montiert.

Die 4- oder 6-poligen Ventilatoren können mit dem
Drehzahlregler eingestellt werden, der in der internen
Einheit oder auf dem Gerät installiert ist.
Die Geräte sind auch mit hochleistungsfähigen ECVentilatoren verfügbar, die einen niedrigen Verbrauch und
eine zuverlässige Kontrolle der Verflüssigungstemperatur
ermöglichen, dank der elektronischen
Geschwindigkeitseinstellung.

DRY-COOLER

Die **Dry-Cooler HiRef** sind externe Geräte, die mit den wassergekühlten internen Geräten wie die Schränke der Baureihen W – F – K kombiniert werden können. HiRef bietet ein umfangreiches Dry-Cooler-Sortiment für den Betrieb mit Glykolwasser bis 60%. Der Rahmen dieser Modelle ist aus Alulegierung

und verzinktem Blech gefertigt: Eine ideale Lösung, die Korrosionsbeständigkeit, den Schutz der Kupferrohre und Solidität garantiert. Die Außenwände aus verzinktem Blech mit Polyesterlack sind gegen Korrosion und UV-Strahlen beständig.


 Stromversorgung 230 V einphasig, oder 400 V dreiphasig

KATALOG CCAC - HPDCU - HDC

 Stromversorgung von interner HiRef Einheit (serienmäßig) oder freistehend (auf Anfrage)

Lamellenpaket

C HiRef

CHiRef

WOLF (Schweiz) AG Alte Obfelderstrasse 59, 8910 Affoltern am Albis info@wolf-klimatechnik.ch www.wolf-klimatechnik.ch

HiRef S.p.A. behält es sich vor, jederzeit und ohne Vorankündigung notwendige Änderungen und Verbesserungen an den Produkten vorzunehmen. Eine vollständige oder teilweise Reproduktion dieses Katalogs ist ohne eine schriftliche Genehmigung von HiRef S.p.A. verboten.

© Copyright HiRef S.p.A. 2022